हिंदी

Prove the following: 2cos2A+12cos2A-1 = tan(60° + A) tan(60° − A) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove the following:

`(2cos2"A" + 1)/(2cos2"A" - 1)` = tan(60° + A) tan(60° − A)

योग

उत्तर

R.H.S. = tan(60° + A) tan(60° − A)

= `(sin(60^circ + "A")sin(60^circ - "A"))/(cos(60^circ + "A")cos(60^circ - "A")`

= `(2sin(60^circ + "A")sin(60^circ - "A"))/(2cos(60^circ + "A")cos(60^circ - "A")`

= `(cos[60^circ + "A" - (60^circ - "A")] - cos(60^circ + "A" + 60^circ - "A"))/(cos(60^circ + "A" + 60^circ - "A") + cos[60^circ + "A" - (60^circ - "A")]`

= `(cos2"A" - cos120^circ)/(cos120^circ - cos2"A")`

= `(cos2"A" - cos(180^circ - 60^circ))/(cos(180^circ - 60^circ) + cos2"A")`

= `(cos2"A" - (- cos 60^circ))/(- cos60^circ + cos2"A")`

= `(cos2"A" + 1/2)/(-1/2 + cos2"A")`

= `(2cos2"A" + 1)/(2cos2"A" - 1)`

= L.H.S.

shaalaa.com
Trigonometric Functions of Sum and Difference of Angles
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - 2 - Miscellaneous Exercise 3 [पृष्ठ ५७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 3 Trigonometry - 2
Miscellaneous Exercise 3 | Q II. (13) | पृष्ठ ५७

संबंधित प्रश्न

Prove the following:

`((1 + tan x)/(1 - tan x))^2 = tan(pi/4 + x)/(tan(pi/4 - x))`


Prove the following:

sin [(n + 1)A]. sin [(n + 2)A] + cos [(n + 1)A]. cos [(n + 2)A] = cos A


Prove the following:

`(cos(x - y))/(cos(x + y)) = (cotx coty + 1)/(cotx coty - 1)`


If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find sin (A + B)


If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find cos (A – B)


If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find tan (A + B)


If tan A = `5/6, tan "B" = 1/11`, prove that A + B = `pi/4`


Select the correct option from the given alternatives:

The value of `costheta/(1 + sin theta)` is equal to .....


Select the correct option from the given alternatives :

The numerical value of tan 20° tan 80° cot 50° is equal to ______.


Prove the following:

3tan610° – 27 tan410° + 33tan210° = 1


Prove the following:

`tan^3x/(1 + tan^2x) + cot^3x/(1 + cot^2x)` = secx cosecx − 2sinx cosx 


tan A +2 tan 2A + 4 tan 4A + 8 cot 8A = ?


The value of sin 163° cos 347° + sin 167° sin 73° is ______


`sqrt3 sin15^circ + cos15^circ` = ______


The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______


If A, B, C are the angles of ΔABC, then `tan  A/2 tan  B/2 + tan  B/2 tan  C/2 + tan  C/2 tan  A/2` = ______ 


`(sin8A + sin2A)/(cos2A - cos8A)` is equal to ______ 


If ABCD is a cyclic quadrilateral, then cos A + cos B + cos C + cos D = ______.


`(sec8A - 1)/(sec4A - 1)` = ______ 


If `(cos(x - y))/(cos(x + y)) = ("a" + "b")/("a" - "b")`, then cot x × cot y is equal to ______.


If `2sin(θ + π/3) = cos(θ - π/6)`, then tan θ, = ______.


If `0 < β < α < π/4, cos (α + β) = 3/5` and cos (α – β) = `4/5`, then sin 2α is equal to ______.


If cos (α + β) = `4/5` and sin (α – β) = `5/13`, where `0 ≤ α, β ≤ π/4`, then tan 2α is equal to ______.


`(tan 80^circ -  tan 10^circ)/(tan 70^circ)` is equal to ______.


lf sin θ = cos θ, then the value of 2 tan2 θ + sin2 θ – 1 is equal to ______.


If `π/2 < α < π, π < β < (3π)/2`; sin α = `15/17` and tan β = `12/5`, then the value of sin(β – α) is ______.


If tan A – tan B = x and cot B – cot A = y, then cot(A – B) = ______.


If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.


The value of cot 70° + 4 cos 70° is ______.


If A, B, C, D are the angles of a cyclic quadrilateral, then cos A + cos B + cos C + cos D is equal to ______.


If ABCD is a cyclic quadrilateral, then the value of cos A – cos B + cos C – cos D is equal to ______.


tan 57° – tan 12° – tan 57° tan 12° is equal to ______.


The value of (cos α + cos β)2 + (sin α + sin β)2 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×