Advertisements
Advertisements
प्रश्न
Prove the following:
`(2cos2"A" + 1)/(2cos2"A" - 1)` = tan(60° + A) tan(60° − A)
उत्तर
R.H.S. = tan(60° + A) tan(60° − A)
= `(sin(60^circ + "A")sin(60^circ - "A"))/(cos(60^circ + "A")cos(60^circ - "A")`
= `(2sin(60^circ + "A")sin(60^circ - "A"))/(2cos(60^circ + "A")cos(60^circ - "A")`
= `(cos[60^circ + "A" - (60^circ - "A")] - cos(60^circ + "A" + 60^circ - "A"))/(cos(60^circ + "A" + 60^circ - "A") + cos[60^circ + "A" - (60^circ - "A")]`
= `(cos2"A" - cos120^circ)/(cos120^circ - cos2"A")`
= `(cos2"A" - cos(180^circ - 60^circ))/(cos(180^circ - 60^circ) + cos2"A")`
= `(cos2"A" - (- cos 60^circ))/(- cos60^circ + cos2"A")`
= `(cos2"A" + 1/2)/(-1/2 + cos2"A")`
= `(2cos2"A" + 1)/(2cos2"A" - 1)`
= L.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
`((1 + tan x)/(1 - tan x))^2 = tan(pi/4 + x)/(tan(pi/4 - x))`
Prove the following:
sin [(n + 1)A]. sin [(n + 2)A] + cos [(n + 1)A]. cos [(n + 2)A] = cos A
Prove the following:
`(cos(x - y))/(cos(x + y)) = (cotx coty + 1)/(cotx coty - 1)`
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find sin (A + B)
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find cos (A – B)
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find tan (A + B)
If tan A = `5/6, tan "B" = 1/11`, prove that A + B = `pi/4`
Select the correct option from the given alternatives:
The value of `costheta/(1 + sin theta)` is equal to .....
Select the correct option from the given alternatives :
The numerical value of tan 20° tan 80° cot 50° is equal to ______.
Prove the following:
3tan610° – 27 tan410° + 33tan210° = 1
Prove the following:
`tan^3x/(1 + tan^2x) + cot^3x/(1 + cot^2x)` = secx cosecx − 2sinx cosx
tan A +2 tan 2A + 4 tan 4A + 8 cot 8A = ?
The value of sin 163° cos 347° + sin 167° sin 73° is ______
`sqrt3 sin15^circ + cos15^circ` = ______
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______
If A, B, C are the angles of ΔABC, then `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` = ______
`(sin8A + sin2A)/(cos2A - cos8A)` is equal to ______
If ABCD is a cyclic quadrilateral, then cos A + cos B + cos C + cos D = ______.
`(sec8A - 1)/(sec4A - 1)` = ______
If `(cos(x - y))/(cos(x + y)) = ("a" + "b")/("a" - "b")`, then cot x × cot y is equal to ______.
If `2sin(θ + π/3) = cos(θ - π/6)`, then tan θ, = ______.
If `0 < β < α < π/4, cos (α + β) = 3/5` and cos (α – β) = `4/5`, then sin 2α is equal to ______.
If cos (α + β) = `4/5` and sin (α – β) = `5/13`, where `0 ≤ α, β ≤ π/4`, then tan 2α is equal to ______.
`(tan 80^circ - tan 10^circ)/(tan 70^circ)` is equal to ______.
lf sin θ = cos θ, then the value of 2 tan2 θ + sin2 θ – 1 is equal to ______.
If `π/2 < α < π, π < β < (3π)/2`; sin α = `15/17` and tan β = `12/5`, then the value of sin(β – α) is ______.
If tan A – tan B = x and cot B – cot A = y, then cot(A – B) = ______.
If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.
The value of cot 70° + 4 cos 70° is ______.
If A, B, C, D are the angles of a cyclic quadrilateral, then cos A + cos B + cos C + cos D is equal to ______.
If ABCD is a cyclic quadrilateral, then the value of cos A – cos B + cos C – cos D is equal to ______.
tan 57° – tan 12° – tan 57° tan 12° is equal to ______.
The value of (cos α + cos β)2 + (sin α + sin β)2 is ______.