Advertisements
Advertisements
प्रश्न
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find sin (A + B)
उत्तर
Given, sin A = `(-5)/13`
We know that,
cos2A = 1 – sin2A = `1 - (-5/13)^2`
= `1 - 25/169`
= `144/169`
∴ cos A = `±12/13`
Since, `pi < "A" < (3pi)/2`
∴ ‘A’ lies in the 3rd quadrant
∴ cos A < 0
∴ cos A = `(-12)/13`
Also, cos B = `3/5`
∴ sin2B = 1 – cos2B = `1 - (3/5)^2`
= `1 - 9/25`
= `16/25`
∴ sin B = `±4/5`
Since, `(3pi)/2 < "B" < 2pi`
∴ ‘B’ lies in the 4th quadrant.
∴ sin B < 0
∴ sin B = `(-4)/5`
sin (A + B) = sin A cos B + cos A sin B
= `(-5/13) (3/5) + (-12/13)(-4/5)`
= `-15/65 + 48/65`
= `33/65`
APPEARS IN
संबंधित प्रश्न
Prove the following:
`sqrt(2)cos (pi/4 - "A")` = cos A + sin A
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find cos (A – B)
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find tan (A + B)
Select the correct option from the given alternatives :
The value of sin(n + 1) A sin (n + 2) A + cos(n + 1) A cos(n + 2) A is equal to
Select the correct option from the given alternatives :
The numerical value of tan 20° tan 80° cot 50° is equal to ______.
Prove the following:
If sin 2A = λsin 2B then prove that `(tan("A" + "B"))/(tan("A" - "B")) = (lambda + 1)/(lambda - 1)`
Prove the following:
`(2cos2"A" + 1)/(2cos2"A" - 1)` = tan(60° + A) tan(60° − A)
Prove the following:
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A
Prove the following:
`tan^3x/(1 + tan^2x) + cot^3x/(1 + cot^2x)` = secx cosecx − 2sinx cosx
tan A +2 tan 2A + 4 tan 4A + 8 cot 8A = ?
\[\frac{1 - \text{sin} \theta + \text{cos} \theta}{1 - \text{sin} \theta - \text{cos} \theta}\] = ?
In Δ ABC, if tan A + tan B + tan C = 6 and tan A tan B = 2 then tan C = ______.
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______
`(tanA + secA - 1)/(tanA - secA + 1)` = ______
If A, B, C are the angles of ΔABC, then `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` = ______
`(sin8A + sin2A)/(cos2A - cos8A)` is equal to ______
If ABCD is a cyclic quadrilateral, then cos A + cos B + cos C + cos D = ______.
If `(cos(x - y))/(cos(x + y)) = ("a" + "b")/("a" - "b")`, then cot x × cot y is equal to ______.
If `2sin(θ + π/3) = cos(θ - π/6)`, then tan θ, = ______.
If sin A + cos A = `sqrt(2)`, then the value of cos2 A is ______.
If tan α = k cot β, then `(cos(α - β))/(cos(α + β))` is equal to ______.
`(cos 9^circ + sin 9^circ)/(cos 9^circ - sin 9^circ)` is equal to ______.
lf sin θ = cos θ, then the value of 2 tan2 θ + sin2 θ – 1 is equal to ______.
If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then ______.
If `π/2 < α < π, π < β < (3π)/2`; sin α = `15/17` and tan β = `12/5`, then the value of sin(β – α) is ______.
sin 4θ can be written as ______.
cos2 76° + cos2 16° – cos 76° cos 16° is equal to ______.
The value of `sin π/16 sin (3π)/16 sin (5π)/16 sin (7π)/16` is ______.
If ABCD is a cyclic quadrilateral, then the value of cos A – cos B + cos C – cos D is equal to ______.
cos(36° − A) cos(36° + A) + cos(54° + A) cos(54° − A) = ______.
`1/3(sqrt(3) cos 23^circ - sin 23^circ)` is equal to ______.
tan 57° – tan 12° – tan 57° tan 12° is equal to ______.
The value of tan 3A – tan 2A – tan A is ______.