Advertisements
Advertisements
प्रश्न
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find sin (A + B)
उत्तर
Given, sin A = `(-5)/13`
We know that,
cos2A = 1 – sin2A = `1 - (-5/13)^2`
= `1 - 25/169`
= `144/169`
∴ cos A = `±12/13`
Since, `pi < "A" < (3pi)/2`
∴ ‘A’ lies in the 3rd quadrant
∴ cos A < 0
∴ cos A = `(-12)/13`
Also, cos B = `3/5`
∴ sin2B = 1 – cos2B = `1 - (3/5)^2`
= `1 - 9/25`
= `16/25`
∴ sin B = `±4/5`
Since, `(3pi)/2 < "B" < 2pi`
∴ ‘B’ lies in the 4th quadrant.
∴ sin B < 0
∴ sin B = `(-4)/5`
sin (A + B) = sin A cos B + cos A sin B
= `(-5/13) (3/5) + (-12/13)(-4/5)`
= `-15/65 + 48/65`
= `33/65`
APPEARS IN
संबंधित प्रश्न
Prove the following:
`sqrt(2)cos (pi/4 - "A")` = cos A + sin A
Prove the following:
`(cos(x - y))/(cos(x + y)) = (cotx coty + 1)/(cotx coty - 1)`
Prove the following:
`(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ) = 1/sqrt(3)`
If tan A = `5/6, tan "B" = 1/11`, prove that A + B = `pi/4`
Select the correct option from the given alternatives :
The value of sin(n + 1) A sin (n + 2) A + cos(n + 1) A cos(n + 2) A is equal to
Select the correct option from the given alternatives :
The numerical value of tan 20° tan 80° cot 50° is equal to ______.
Prove the following:
If sin 2A = λsin 2B then prove that `(tan("A" + "B"))/(tan("A" - "B")) = (lambda + 1)/(lambda - 1)`
Prove the following:
tanA + tan(60° + A) + tan(120° + A) = 3 tan 3A
Prove the following:
3tan610° – 27 tan410° + 33tan210° = 1
Prove the following:
`tan^3x/(1 + tan^2x) + cot^3x/(1 + cot^2x)` = secx cosecx − 2sinx cosx
`(cos 25^circ + sin 25^circ)/(cos 25^circ - sin 25^circ)` = ?
tan A +2 tan 2A + 4 tan 4A + 8 cot 8A = ?
cos (36° - A) cos (36° + A) + cos(54° + A) cos (54° - A) = ?
The value of sin 163° cos 347° + sin 167° sin 73° is ______
In Δ ABC, if tan A + tan B + tan C = 6 and tan A tan B = 2 then tan C = ______.
`(tanA + secA - 1)/(tanA - secA + 1)` = ______
If A, B, C are the angles of ΔABC, then `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` = ______
If `(cos(x - y))/(cos(x + y)) = ("a" + "b")/("a" - "b")`, then cot x × cot y is equal to ______.
If equation tan θ + tan 2θ + tan θ tan 2θ = 1, θ = ______.
If `2sin(θ + π/3) = cos(θ - π/6)`, then tan θ, = ______.
If `α, β ∈ (0, π/2)`, sin α = `4/5` and cos (α + β) = `-12/13`, then sin β is equal to ______.
`(cos 9^circ + sin 9^circ)/(cos 9^circ - sin 9^circ)` is equal to ______.
If cos(81° + θ) = `sin(k/3 - θ)`, then k is equal to ______.
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin 31^circ) - 8 sin^2 30^circ` is equal to ______.
If cos θ = `8/17` and θ lies in the 1st quadrant, then the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ) is ______.
If `π/2 < α < π, π < β < (3π)/2`; sin α = `15/17` and tan β = `12/5`, then the value of sin(β – α) is ______.
If tan A – tan B = x and cot B – cot A = y, then cot(A – B) = ______.
If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.
cos2 76° + cos2 16° – cos 76° cos 16° is equal to ______.
If ABCD is a cyclic quadrilateral, then the value of cos A – cos B + cos C – cos D is equal to ______.
tan 57° – tan 12° – tan 57° tan 12° is equal to ______.
The value of (cos α + cos β)2 + (sin α + sin β)2 is ______.