Advertisements
Advertisements
प्रश्न
Prove the following:
`(cos(x - y))/(cos(x + y)) = (cotx coty + 1)/(cotx coty - 1)`
उत्तर
L.H.S. = `(cos(x - y))/(cos(x + y))`
= `(cosx cosy + sinx siny)/(cos x cos y - sin x sin y)`
Dividing numerator and denominator by sin x sin y, we get
L.H.S. = `(((cosx cosy)/(sinx sin y) + 1))/(((cosx cos y)/(sinx sin y) - 1)`
= `(cotx coty + 1)/(cotx coty - 1)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
`tan(pi/4 + theta) = (1 + tan theta)/(1 - tan theta)`
Prove the following:
sin [(n + 1)A]. sin [(n + 2)A] + cos [(n + 1)A]. cos [(n + 2)A] = cos A
Prove the following:
`(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ) = 1/sqrt(3)`
If tan A = `5/6, tan "B" = 1/11`, prove that A + B = `pi/4`
Select the correct option from the given alternatives :
If tan A – tan B = x and cot B – cot A = y, then cot (A – B) = _____
Prove the following:
If sin 2A = λsin 2B then prove that `(tan("A" + "B"))/(tan("A" - "B")) = (lambda + 1)/(lambda - 1)`
Prove the following:
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A
`(cos 25^circ + sin 25^circ)/(cos 25^circ - sin 25^circ)` = ?
tan A +2 tan 2A + 4 tan 4A + 8 cot 8A = ?
\[\frac{1 - \text{sin} \theta + \text{cos} \theta}{1 - \text{sin} \theta - \text{cos} \theta}\] = ?
If x cos θ + y sin θ = 5, x sin θ − y cos θ = 3, then the value of x2 + y2 = ____________.
The value of sin 163° cos 347° + sin 167° sin 73° is ______
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______
`(sec8A - 1)/(sec4A - 1)` = ______
If `(cos(x - y))/(cos(x + y)) = ("a" + "b")/("a" - "b")`, then cot x × cot y is equal to ______.
If `2sin(θ + π/3) = cos(θ - π/6)`, then tan θ, = ______.
If sin A + cos A = `sqrt(2)`, then the value of cos2 A is ______.
The value of cos 15° is ______.
If cos (α + β) = `4/5` and sin (α – β) = `5/13`, where `0 ≤ α, β ≤ π/4`, then tan 2α is equal to ______.
If A + B = 45°, then (cot A – 1) (cot B – 1) is equal to ______.
If tan α = k cot β, then `(cos(α - β))/(cos(α + β))` is equal to ______.
`(tan 80^circ - tan 10^circ)/(tan 70^circ)` is equal to ______.
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin 31^circ) - 8 sin^2 30^circ` is equal to ______.
The expression cos2(A – B) + cos2 B – 2 cos(A – B) cos A cos B is ______.
If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then ______.
If cos(A – B) = `3/5` and tan A tan B = 2, then ______.
tan 100° + tan 125° + tan 100° tan 125° = ______.
If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.
If A, B, C, D are the angles of a cyclic quadrilateral, then cos A + cos B + cos C + cos D is equal to ______.
If ABCD is a cyclic quadrilateral, then the value of cos A – cos B + cos C – cos D is equal to ______.
cos(36° − A) cos(36° + A) + cos(54° + A) cos(54° − A) = ______.
cos2 x + cos2 y – 2 cos x cos y cos (x + y) is equal to ______.