Advertisements
Advertisements
Question
Prove the following:
`(cos(x - y))/(cos(x + y)) = (cotx coty + 1)/(cotx coty - 1)`
Solution
L.H.S. = `(cos(x - y))/(cos(x + y))`
= `(cosx cosy + sinx siny)/(cos x cos y - sin x sin y)`
Dividing numerator and denominator by sin x sin y, we get
L.H.S. = `(((cosx cosy)/(sinx sin y) + 1))/(((cosx cos y)/(sinx sin y) - 1)`
= `(cotx coty + 1)/(cotx coty - 1)`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following:
`((1 + tan x)/(1 - tan x))^2 = tan(pi/4 + x)/(tan(pi/4 - x))`
Prove the following:
`(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ) = 1/sqrt(3)`
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find sin (A + B)
Select the correct option from the given alternatives :
The value of sin(n + 1) A sin (n + 2) A + cos(n + 1) A cos(n + 2) A is equal to
Select the correct option from the given alternatives :
The numerical value of tan 20° tan 80° cot 50° is equal to ______.
Prove the following:
tanA + tan(60° + A) + tan(120° + A) = 3 tan 3A
Prove the following:
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A
`(cos 25^circ + sin 25^circ)/(cos 25^circ - sin 25^circ)` = ?
The value of `tan^-1 (1/3) + tan^-1 (1/5) + tan^-1 (1/7) + tan^-1 (1/8)`is ______.
cos (36° - A) cos (36° + A) + cos(54° + A) cos (54° - A) = ?
\[\frac{1 - \text{sin} \theta + \text{cos} \theta}{1 - \text{sin} \theta - \text{cos} \theta}\] = ?
`sqrt3 sin15^circ + cos15^circ` = ______
`(tanA + secA - 1)/(tanA - secA + 1)` = ______
If A, B, C are the angles of ΔABC, then `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` = ______
`(sin8A + sin2A)/(cos2A - cos8A)` is equal to ______
If `(cos(x - y))/(cos(x + y)) = ("a" + "b")/("a" - "b")`, then cot x × cot y is equal to ______.
If `2sin(θ + π/3) = cos(θ - π/6)`, then tan θ, = ______.
If sin A + cos A = `sqrt(2)`, then the value of cos2 A is ______.
If A + B = 45°, then (cot A – 1) (cot B – 1) is equal to ______.
If tan α = k cot β, then `(cos(α - β))/(cos(α + β))` is equal to ______.
If α + β = `π/2` and β + γ = α, then the value of tan α is ______.
`(cos 9^circ + sin 9^circ)/(cos 9^circ - sin 9^circ)` is equal to ______.
If cos(81° + θ) = `sin(k/3 - θ)`, then k is equal to ______.
lf sin θ = cos θ, then the value of 2 tan2 θ + sin2 θ – 1 is equal to ______.
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin 31^circ) - 8 sin^2 30^circ` is equal to ______.
If cos θ = `8/17` and θ lies in the 1st quadrant, then the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ) is ______.
The expression cos2(A – B) + cos2 B – 2 cos(A – B) cos A cos B is ______.
If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then ______.
tan 100° + tan 125° + tan 100° tan 125° = ______.
sin 4θ can be written as ______.
If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.
cos(36° − A) cos(36° + A) + cos(54° + A) cos(54° − A) = ______.
`1/3(sqrt(3) cos 23^circ - sin 23^circ)` is equal to ______.
tan 57° – tan 12° – tan 57° tan 12° is equal to ______.