Advertisements
Advertisements
Question
Prove the following:
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A
Solution
L.H.S. = tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A
= `tan"A" + 2tan2"A" + 4tan4"A" + 8/(tan8"A")`
= `tan"A" + 2tan2"A" + 4tan4"A" + (8(1 - tan^2 4"A"))/(2tan4"A") ...[because tan2theta = (2tantheta)/(1 - tan^2theta)]`
= `tan"A" + 2tan2"A" + (8tan^2 4"A" + 8 - 8tan^2 4"A")/(2tan4"A")`
= `tan"A" + 2tan2"A" + 4/(tan4"A")`
= `tan"A" + 2tan2"A" + (4(1 - tan^2 2"A"))/(2tan2"A")`
= `tan"A" + (4tan^2 2"A" + 4 - 4tan^2 2"A")/(2tan2"A")`
= `tan"A" + 2/(tan2"A")`
= `tan"A" + (2(1 - tan^2"A"))/(2tan"A")`
= `(2tan^2"A" + 2 - 2tan^2"A")/(2tan"A")`
= `1/tan"A"`
= cot A
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following:
sin [(n + 1)A]. sin [(n + 2)A] + cos [(n + 1)A]. cos [(n + 2)A] = cos A
Prove the following:
`sqrt(2)cos (pi/4 - "A")` = cos A + sin A
Prove the following:
`(cos(x - y))/(cos(x + y)) = (cotx coty + 1)/(cotx coty - 1)`
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find sin (A + B)
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find cos (A – B)
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find tan (A + B)
Select the correct option from the given alternatives:
The value of `costheta/(1 + sin theta)` is equal to .....
The value of `tan^-1 (1/3) + tan^-1 (1/5) + tan^-1 (1/7) + tan^-1 (1/8)`is ______.
cos (36° - A) cos (36° + A) + cos(54° + A) cos (54° - A) = ?
\[\frac{1 - \text{sin} \theta + \text{cos} \theta}{1 - \text{sin} \theta - \text{cos} \theta}\] = ?
`sqrt3 sin15^circ + cos15^circ` = ______
If equation tan θ + tan 2θ + tan θ tan 2θ = 1, θ = ______.
If `2sin(θ + π/3) = cos(θ - π/6)`, then tan θ, = ______.
The value of cos 15° is ______.
If `0 < β < α < π/4, cos (α + β) = 3/5` and cos (α – β) = `4/5`, then sin 2α is equal to ______.
The value of `tan 40^circ + tan 20^circ + sqrt(3) tan 20^circ tan 40^circ` is ______.
If cos (α + β) = `4/5` and sin (α – β) = `5/13`, where `0 ≤ α, β ≤ π/4`, then tan 2α is equal to ______.
If A + B = 45°, then (cot A – 1) (cot B – 1) is equal to ______.
If tan α = k cot β, then `(cos(α - β))/(cos(α + β))` is equal to ______.
`(cos 9^circ + sin 9^circ)/(cos 9^circ - sin 9^circ)` is equal to ______.
`(tan 80^circ - tan 10^circ)/(tan 70^circ)` is equal to ______.
If cos(81° + θ) = `sin(k/3 - θ)`, then k is equal to ______.
lf sin θ = cos θ, then the value of 2 tan2 θ + sin2 θ – 1 is equal to ______.
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin 31^circ) - 8 sin^2 30^circ` is equal to ______.
If cos θ = `8/17` and θ lies in the 1st quadrant, then the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ) is ______.
If A, B, C, D are the angles of a cyclic quadrilateral, then cos A + cos B + cos C + cos D is equal to ______.
cos(36° − A) cos(36° + A) + cos(54° + A) cos(54° − A) = ______.
`1/3(sqrt(3) cos 23^circ - sin 23^circ)` is equal to ______.
tan 57° – tan 12° – tan 57° tan 12° is equal to ______.
The value of (cos α + cos β)2 + (sin α + sin β)2 is ______.
The value of tan 3A – tan 2A – tan A is ______.