Advertisements
Advertisements
Question
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find cos (A – B)
Solution
Given, sin A = `(-5)/13`
We know that,
cos2A = 1 – sin2A = `1 - (-5/13)^2`
= `1 - 25/169`
= `144/169`
∴ cos A = `±12/13`
Since, `pi < "A" < (3pi)/2`
∴ ‘A’ lies in the 3rd quadrant
∴ cos A < 0
∴ cos A = `(-12)/13`
Also, cos B = `3/5`
∴ sin2B = 1 – cos2B = `1 - (3/5)^2`
= `1 - 9/25`
= `16/25`
∴ sin B = `±4/5`
Since, `(3pi)/2 < "B" < 2pi`
∴ ‘B’ lies in the 4th quadrant.
∴ sin B < 0
∴ sin B = `(-4)/5`
cos(A – B) = cosA cosB +sinA sinB
= `(-12/13)(3/5)+(-5/13)(-4/5)`
= `-36/65+20/65`
= `-16/65`
APPEARS IN
RELATED QUESTIONS
Prove the following:
`tan(pi/4 + theta) = (1 + tan theta)/(1 - tan theta)`
Prove the following:
sin [(n + 1)A]. sin [(n + 2)A] + cos [(n + 1)A]. cos [(n + 2)A] = cos A
Prove the following:
`(cos(x - y))/(cos(x + y)) = (cotx coty + 1)/(cotx coty - 1)`
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find tan (A + B)
If tan A = `5/6, tan "B" = 1/11`, prove that A + B = `pi/4`
Select the correct option from the given alternatives :
The numerical value of tan 20° tan 80° cot 50° is equal to ______.
Prove the following:
tanA + tan(60° + A) + tan(120° + A) = 3 tan 3A
Prove the following:
3tan610° – 27 tan410° + 33tan210° = 1
`(cos 25^circ + sin 25^circ)/(cos 25^circ - sin 25^circ)` = ?
The value of `tan^-1 (1/3) + tan^-1 (1/5) + tan^-1 (1/7) + tan^-1 (1/8)`is ______.
tan A +2 tan 2A + 4 tan 4A + 8 cot 8A = ?
cos (36° - A) cos (36° + A) + cos(54° + A) cos (54° - A) = ?
\[\frac{1 - \text{sin} \theta + \text{cos} \theta}{1 - \text{sin} \theta - \text{cos} \theta}\] = ?
`sqrt3 sin15^circ + cos15^circ` = ______
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______
If A, B, C are the angles of ΔABC, then `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` = ______
`(sin8A + sin2A)/(cos2A - cos8A)` is equal to ______
`(sec8A - 1)/(sec4A - 1)` = ______
If equation tan θ + tan 2θ + tan θ tan 2θ = 1, θ = ______.
If sin A + cos A = `sqrt(2)`, then the value of cos2 A is ______.
The value of cos 15° is ______.
If `0 < β < α < π/4, cos (α + β) = 3/5` and cos (α – β) = `4/5`, then sin 2α is equal to ______.
If `α, β ∈ (0, π/2)`, sin α = `4/5` and cos (α + β) = `-12/13`, then sin β is equal to ______.
If cos (α + β) = `4/5` and sin (α – β) = `5/13`, where `0 ≤ α, β ≤ π/4`, then tan 2α is equal to ______.
If α + β = `π/2` and β + γ = α, then the value of tan α is ______.
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin 31^circ) - 8 sin^2 30^circ` is equal to ______.
If cos θ = `8/17` and θ lies in the 1st quadrant, then the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ) is ______.
If cos(A – B) = `3/5` and tan A tan B = 2, then ______.
tan 100° + tan 125° + tan 100° tan 125° = ______.
If `π/2 < α < π, π < β < (3π)/2`; sin α = `15/17` and tan β = `12/5`, then the value of sin(β – α) is ______.
cos2 76° + cos2 16° – cos 76° cos 16° is equal to ______.
If A, B, C, D are the angles of a cyclic quadrilateral, then cos A + cos B + cos C + cos D is equal to ______.
tan 57° – tan 12° – tan 57° tan 12° is equal to ______.
cos2 x + cos2 y – 2 cos x cos y cos (x + y) is equal to ______.
The value of tan 3A – tan 2A – tan A is ______.