Advertisements
Advertisements
Question
Prove the following:
`tan(pi/4 + theta) = (1 + tan theta)/(1 - tan theta)`
Solution
`L.H.S. = tan(pi/4 + theta)`
According to `tan(A + B) = (tan A + tan B) / (1-tan A tan B`,
We get
`L.H.S. = (tan pi/4 + tan theta)/(1 - tan pi/4 tan theta)`
`L.H.S = (1 + tan theta)/(1 -(1) tan theta)` ...[because `tan pi/4 = 1]`
=`(1 + tan theta) / (1 - tan theta)`
Here `L.H.S = R.H.S`, Hence proved
Notes
APPEARS IN
RELATED QUESTIONS
Prove the following:
sin [(n + 1)A]. sin [(n + 2)A] + cos [(n + 1)A]. cos [(n + 2)A] = cos A
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find sin (A + B)
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find cos (A – B)
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find tan (A + B)
Select the correct option from the given alternatives :
The value of sin(n + 1) A sin (n + 2) A + cos(n + 1) A cos(n + 2) A is equal to
Select the correct option from the given alternatives :
If tan A – tan B = x and cot B – cot A = y, then cot (A – B) = _____
Select the correct option from the given alternatives:
The value of `costheta/(1 + sin theta)` is equal to .....
Prove the following:
`(2cos2"A" + 1)/(2cos2"A" - 1)` = tan(60° + A) tan(60° − A)
\[\frac{1 - \text{sin} \theta + \text{cos} \theta}{1 - \text{sin} \theta - \text{cos} \theta}\] = ?
The value of sin 163° cos 347° + sin 167° sin 73° is ______
In Δ ABC, if tan A + tan B + tan C = 6 and tan A tan B = 2 then tan C = ______.
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______
`(tanA + secA - 1)/(tanA - secA + 1)` = ______
If A, B, C are the angles of ΔABC, then `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` = ______
`(sin8A + sin2A)/(cos2A - cos8A)` is equal to ______
If ABCD is a cyclic quadrilateral, then cos A + cos B + cos C + cos D = ______.
`(sec8A - 1)/(sec4A - 1)` = ______
If `(cos(x - y))/(cos(x + y)) = ("a" + "b")/("a" - "b")`, then cot x × cot y is equal to ______.
If sin A + cos A = `sqrt(2)`, then the value of cos2 A is ______.
The value of cos 15° is ______.
The value of `tan 40^circ + tan 20^circ + sqrt(3) tan 20^circ tan 40^circ` is ______.
If `α, β ∈ (0, π/2)`, sin α = `4/5` and cos (α + β) = `-12/13`, then sin β is equal to ______.
`(cos 9^circ + sin 9^circ)/(cos 9^circ - sin 9^circ)` is equal to ______.
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin 31^circ) - 8 sin^2 30^circ` is equal to ______.
The expression cos2(A – B) + cos2 B – 2 cos(A – B) cos A cos B is ______.
The value of `sin π/16 sin (3π)/16 sin (5π)/16 sin (7π)/16` is ______.
The value of cot 70° + 4 cos 70° is ______.
If ABCD is a cyclic quadrilateral, then the value of cos A – cos B + cos C – cos D is equal to ______.
cos(36° − A) cos(36° + A) + cos(54° + A) cos(54° − A) = ______.
tan 57° – tan 12° – tan 57° tan 12° is equal to ______.
The value of (cos α + cos β)2 + (sin α + sin β)2 is ______.
cos2 x + cos2 y – 2 cos x cos y cos (x + y) is equal to ______.