Advertisements
Advertisements
Question
Select the correct option from the given alternatives:
The value of `costheta/(1 + sin theta)` is equal to .....
Options
`tan(theta/2 - pi/4)`
`tan(-pi/4 - theta/2)`
`tan(pi/4 - theta/2)`
`tan(pi/4 + theta/2)`
Solution
`tan(pi/4 - theta/2)`
Explanation:
`costheta/(1 + sintheta) = (cos^2 theta/2 - sin^2 theta/2)/(cos^2 theta/2 + sin^2 theta/2 + 2sin theta/2 cos theta/2)`
= `((cos theta/2 - sin theta/2)(cos theta/2 + sin theta/2))/((cos theta/2 + sin theta/2)^2`
= `(cos theta/2 - sin theta/2)/(cos theta/2 + sin theta/2)`
Dividing numerator and denominator by `cos theta/2`, we get
`costheta/(1 + sintheta) = (1 - tan theta/2)/(1 + tan theta/2) = tan(pi/4 - theta/2)`
APPEARS IN
RELATED QUESTIONS
Prove the following:
`((1 + tan x)/(1 - tan x))^2 = tan(pi/4 + x)/(tan(pi/4 - x))`
Prove the following:
sin [(n + 1)A]. sin [(n + 2)A] + cos [(n + 1)A]. cos [(n + 2)A] = cos A
Prove the following:
`(cos(x - y))/(cos(x + y)) = (cotx coty + 1)/(cotx coty - 1)`
Prove the following:
`(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ) = 1/sqrt(3)`
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find sin (A + B)
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find cos (A – B)
If tan A = `5/6, tan "B" = 1/11`, prove that A + B = `pi/4`
Select the correct option from the given alternatives :
If tan A – tan B = x and cot B – cot A = y, then cot (A – B) = _____
Select the correct option from the given alternatives :
The numerical value of tan 20° tan 80° cot 50° is equal to ______.
Prove the following:
If sin 2A = λsin 2B then prove that `(tan("A" + "B"))/(tan("A" - "B")) = (lambda + 1)/(lambda - 1)`
Prove the following:
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A
Prove the following:
`tan^3x/(1 + tan^2x) + cot^3x/(1 + cot^2x)` = secx cosecx − 2sinx cosx
The value of `tan^-1 (1/3) + tan^-1 (1/5) + tan^-1 (1/7) + tan^-1 (1/8)`is ______.
cos (36° - A) cos (36° + A) + cos(54° + A) cos (54° - A) = ?
\[\frac{1 - \text{sin} \theta + \text{cos} \theta}{1 - \text{sin} \theta - \text{cos} \theta}\] = ?
The value of sin 163° cos 347° + sin 167° sin 73° is ______
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______
`(tanA + secA - 1)/(tanA - secA + 1)` = ______
If A, B, C are the angles of ΔABC, then `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` = ______
`(sin8A + sin2A)/(cos2A - cos8A)` is equal to ______
If ABCD is a cyclic quadrilateral, then cos A + cos B + cos C + cos D = ______.
`(sec8A - 1)/(sec4A - 1)` = ______
If `0 < β < α < π/4, cos (α + β) = 3/5` and cos (α – β) = `4/5`, then sin 2α is equal to ______.
If cos (α + β) = `4/5` and sin (α – β) = `5/13`, where `0 ≤ α, β ≤ π/4`, then tan 2α is equal to ______.
If A + B = 45°, then (cot A – 1) (cot B – 1) is equal to ______.
`(cos 9^circ + sin 9^circ)/(cos 9^circ - sin 9^circ)` is equal to ______.
If cos(81° + θ) = `sin(k/3 - θ)`, then k is equal to ______.
If cos(A – B) = `3/5` and tan A tan B = 2, then ______.
If tan A – tan B = x and cot B – cot A = y, then cot(A – B) = ______.
If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.
cos(36° − A) cos(36° + A) + cos(54° + A) cos(54° − A) = ______.
The value of (cos α + cos β)2 + (sin α + sin β)2 is ______.
cos2 x + cos2 y – 2 cos x cos y cos (x + y) is equal to ______.