Advertisements
Advertisements
Question
If tan A = `5/6, tan "B" = 1/11`, prove that A + B = `pi/4`
Solution
We have, tan A = `5/6` and tan B = `1/11`
∴ tan(A + B) = `(tan"A" + tan"B")/(1 - tan"A".tan"B")`
∴ tan(A + B) = `(5/6 + 1/11)/(1 - (5/6)(1/11))`
∴ tan(A + B) = `(55 + 6)/(66 - 5)`
∴ tan(A + B) = `61/61`
∴ tan(A + B) = 1
∴ tan(A + B) = 1 = `tan π/4`
∴ A + B = `π/4`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following:
sin [(n + 1)A]. sin [(n + 2)A] + cos [(n + 1)A]. cos [(n + 2)A] = cos A
Prove the following:
`(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ) = 1/sqrt(3)`
Select the correct option from the given alternatives :
The value of sin(n + 1) A sin (n + 2) A + cos(n + 1) A cos(n + 2) A is equal to
Select the correct option from the given alternatives :
If tan A – tan B = x and cot B – cot A = y, then cot (A – B) = _____
Select the correct option from the given alternatives :
The numerical value of tan 20° tan 80° cot 50° is equal to ______.
Prove the following:
tanA + tan(60° + A) + tan(120° + A) = 3 tan 3A
Prove the following:
`tan^3x/(1 + tan^2x) + cot^3x/(1 + cot^2x)` = secx cosecx − 2sinx cosx
\[\frac{1 - \text{sin} \theta + \text{cos} \theta}{1 - \text{sin} \theta - \text{cos} \theta}\] = ?
If f(x) = log (sec x + tan x), then `"f'"(π/4)` = ____________.
The value of sin 163° cos 347° + sin 167° sin 73° is ______
`sqrt3 sin15^circ + cos15^circ` = ______
`(sin8A + sin2A)/(cos2A - cos8A)` is equal to ______
If ABCD is a cyclic quadrilateral, then cos A + cos B + cos C + cos D = ______.
`(sec8A - 1)/(sec4A - 1)` = ______
The value of cos 15° is ______.
The value of `tan 40^circ + tan 20^circ + sqrt(3) tan 20^circ tan 40^circ` is ______.
If `α, β ∈ (0, π/2)`, sin α = `4/5` and cos (α + β) = `-12/13`, then sin β is equal to ______.
If cos (α + β) = `4/5` and sin (α – β) = `5/13`, where `0 ≤ α, β ≤ π/4`, then tan 2α is equal to ______.
If A + B = 45°, then (cot A – 1) (cot B – 1) is equal to ______.
If tan α = k cot β, then `(cos(α - β))/(cos(α + β))` is equal to ______.
If α + β = `π/2` and β + γ = α, then the value of tan α is ______.
lf sin θ = cos θ, then the value of 2 tan2 θ + sin2 θ – 1 is equal to ______.
tan 100° + tan 125° + tan 100° tan 125° = ______.
If tan A – tan B = x and cot B – cot A = y, then cot(A – B) = ______.
sin 4θ can be written as ______.
If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.
The value of cot 70° + 4 cos 70° is ______.
If A, B, C, D are the angles of a cyclic quadrilateral, then cos A + cos B + cos C + cos D is equal to ______.
If ABCD is a cyclic quadrilateral, then the value of cos A – cos B + cos C – cos D is equal to ______.
cos(36° − A) cos(36° + A) + cos(54° + A) cos(54° − A) = ______.
`1/3(sqrt(3) cos 23^circ - sin 23^circ)` is equal to ______.
cos2 x + cos2 y – 2 cos x cos y cos (x + y) is equal to ______.