Advertisements
Advertisements
Question
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find tan (A + B)
Solution
Given, sin A = `(-5)/13`
We know that,
cos2A = 1 – sin2A = `1 - (-5/13)^2`
= `1 - 25/169`
= `144/169`
∴ cos A = `±12/13`
Since, `pi < "A" < (3pi)/2`
∴ ‘A’ lies in the 3rd quadrant
∴ cos A < 0
∴ cos A = `(-12)/13`
Also, cos B = `3/5`
∴ sin2B = 1 – cos2B = `1 - (3/5)^2`
= `1 - 9/25`
= `16/25`
∴ sin B = `±4/5`
Since, `(3pi)/2 < "B" < 2pi`
∴ ‘B’ lies in the 4th quadrant.
∴ sin B < 0
∴ sin B = `(-4)/5`
tan A = `sin"A"/cos"A" = ((-5/13))/((-12/13)) = 5/12`
tan B = `sin"B"/cos"B" = ((-4/5))/((3/5)) = -4/3`
tan (A + B) = `(tan"A" + tan"B")/(1 - tan"A" tan"B")`
= `(5/12 - 4/3)/(1 - (5/12)(-4/3)`
= `((-33/36))/((56/36))`
= `-33/56`
APPEARS IN
RELATED QUESTIONS
Prove the following:
`tan(pi/4 + theta) = (1 + tan theta)/(1 - tan theta)`
Select the correct option from the given alternatives :
The value of sin(n + 1) A sin (n + 2) A + cos(n + 1) A cos(n + 2) A is equal to
Select the correct option from the given alternatives:
The value of `costheta/(1 + sin theta)` is equal to .....
Prove the following:
`(2cos2"A" + 1)/(2cos2"A" - 1)` = tan(60° + A) tan(60° − A)
Prove the following:
tanA + tan(60° + A) + tan(120° + A) = 3 tan 3A
`(cos 25^circ + sin 25^circ)/(cos 25^circ - sin 25^circ)` = ?
cos (36° - A) cos (36° + A) + cos(54° + A) cos (54° - A) = ?
The value of sin 163° cos 347° + sin 167° sin 73° is ______
`sqrt3 sin15^circ + cos15^circ` = ______
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______
`(tanA + secA - 1)/(tanA - secA + 1)` = ______
`(sin8A + sin2A)/(cos2A - cos8A)` is equal to ______
If ABCD is a cyclic quadrilateral, then cos A + cos B + cos C + cos D = ______.
`(sec8A - 1)/(sec4A - 1)` = ______
If `(cos(x - y))/(cos(x + y)) = ("a" + "b")/("a" - "b")`, then cot x × cot y is equal to ______.
If equation tan θ + tan 2θ + tan θ tan 2θ = 1, θ = ______.
If sin A + cos A = `sqrt(2)`, then the value of cos2 A is ______.
The value of `tan 40^circ + tan 20^circ + sqrt(3) tan 20^circ tan 40^circ` is ______.
If A + B = 45°, then (cot A – 1) (cot B – 1) is equal to ______.
tan 100° + tan 125° + tan 100° tan 125° = ______.
sin 4θ can be written as ______.
If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.
The value of `sin π/16 sin (3π)/16 sin (5π)/16 sin (7π)/16` is ______.
The value of cot 70° + 4 cos 70° is ______.
If A, B, C, D are the angles of a cyclic quadrilateral, then cos A + cos B + cos C + cos D is equal to ______.
If ABCD is a cyclic quadrilateral, then the value of cos A – cos B + cos C – cos D is equal to ______.
`1/3(sqrt(3) cos 23^circ - sin 23^circ)` is equal to ______.
tan 57° – tan 12° – tan 57° tan 12° is equal to ______.
The value of (cos α + cos β)2 + (sin α + sin β)2 is ______.
The value of tan 3A – tan 2A – tan A is ______.