Advertisements
Advertisements
Question
Prove the following:
tanA + tan(60° + A) + tan(120° + A) = 3 tan 3A
Solution
L.H.S. = tanA + tan(60° + A) + tan(120° + A)
= `tan"A" + (tan60^circ + tan"A")/(1 - tan60^circ*tan"A") + (tan120^circ + tan"A")/(1 - tan120^circ*tan"A")`
= `tan"A" + (sqrt(3) + tan"A")/(1 - sqrt(3)tan"A") + (-sqrt(3) + tan"A")/(1 + sqrt(3)tan"A") ...[because tan60^circ = sqrt(3) and tan120^circ = tan(180^circ - 60^circ) = -tan60^circ = -sqrt(3)]`
= `(tan"A"(1 - 3tan^2"A") + (sqrt(3) + tan"A")(1 + sqrt(3)tan"A") + (-sqrt(3) + tan"A")(1 - sqrt(3)tan"A"))/((1 - sqrt(3)tan"A")(1 + sqrt(3)tan"A")`
= `(tan"A" - 3tan^3"A" + sqrt(3) + 3tan"A" + tan"A" + sqrt(3)tan^2"A" - sqrt(3) + 3tan"A" + tan"A" + sqrt(3)tan^2"A")/(1 - 3tan^2"A")`
= `(9tan"A" - 3tan^3"A")/(1 - 3tan^2"A")`
= `3((3tan"A" - tan^3"A")/(1 - 3tan^2"A"))`
= 3 tan 3A
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following:
sin [(n + 1)A]. sin [(n + 2)A] + cos [(n + 1)A]. cos [(n + 2)A] = cos A
Prove the following:
`(cos(x - y))/(cos(x + y)) = (cotx coty + 1)/(cotx coty - 1)`
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find sin (A + B)
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find cos (A – B)
Select the correct option from the given alternatives :
The value of sin(n + 1) A sin (n + 2) A + cos(n + 1) A cos(n + 2) A is equal to
Select the correct option from the given alternatives :
If tan A – tan B = x and cot B – cot A = y, then cot (A – B) = _____
Prove the following:
If sin 2A = λsin 2B then prove that `(tan("A" + "B"))/(tan("A" - "B")) = (lambda + 1)/(lambda - 1)`
Prove the following:
`(2cos2"A" + 1)/(2cos2"A" - 1)` = tan(60° + A) tan(60° − A)
Prove the following:
3tan610° – 27 tan410° + 33tan210° = 1
`(cos 25^circ + sin 25^circ)/(cos 25^circ - sin 25^circ)` = ?
If f(x) = log (sec x + tan x), then `"f'"(π/4)` = ____________.
The value of sin 163° cos 347° + sin 167° sin 73° is ______
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______
`(sin8A + sin2A)/(cos2A - cos8A)` is equal to ______
If ABCD is a cyclic quadrilateral, then cos A + cos B + cos C + cos D = ______.
`(sec8A - 1)/(sec4A - 1)` = ______
If `2sin(θ + π/3) = cos(θ - π/6)`, then tan θ, = ______.
The value of `tan 40^circ + tan 20^circ + sqrt(3) tan 20^circ tan 40^circ` is ______.
If `α, β ∈ (0, π/2)`, sin α = `4/5` and cos (α + β) = `-12/13`, then sin β is equal to ______.
If A + B = 45°, then (cot A – 1) (cot B – 1) is equal to ______.
If tan α = k cot β, then `(cos(α - β))/(cos(α + β))` is equal to ______.
If α + β = `π/2` and β + γ = α, then the value of tan α is ______.
`(tan 80^circ - tan 10^circ)/(tan 70^circ)` is equal to ______.
If cos(81° + θ) = `sin(k/3 - θ)`, then k is equal to ______.
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin 31^circ) - 8 sin^2 30^circ` is equal to ______.
If cos θ = `8/17` and θ lies in the 1st quadrant, then the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ) is ______.
If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then ______.
If `π/2 < α < π, π < β < (3π)/2`; sin α = `15/17` and tan β = `12/5`, then the value of sin(β – α) is ______.
If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.
If A, B, C, D are the angles of a cyclic quadrilateral, then cos A + cos B + cos C + cos D is equal to ______.
tan 57° – tan 12° – tan 57° tan 12° is equal to ______.
The value of (cos α + cos β)2 + (sin α + sin β)2 is ______.