English

Prove the following: 3tan610° – 27 tan410° + 33tan210° = 1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following:

3tan610° – 27 tan410° + 33tan210° = 1

Sum

Solution

Since, tan30° = 13

∴ tan3(10°) = 13

3tan10-tan3101-3tan210=13

Squaring both the sides, we get

(3tan10-tan310)2(1-3tan2 10)2=13

9tan210-6tan410+tan6101-6tan210+9tan410=13

∴ 3(9tan210° – 6tan410°+ tan610°) = 1 – 6tan210° + 9tan410°

∴ 27tan210° – 18tan410° + 3tan610° = 1 – 6tan210° + 9tan410°

∴ 3tan610° – 27tan410° + 33tan210° = 1

shaalaa.com
Trigonometric Functions of Sum and Difference of Angles
  Is there an error in this question or solution?
Chapter 3: Trigonometry - 2 - Miscellaneous Exercise 3 [Page 57]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 3 Trigonometry - 2
Miscellaneous Exercise 3 | Q II. (15) | Page 57

RELATED QUESTIONS

Prove the following:

tan(π4+θ)=1+tanθ1-tanθ


Prove the following:

(1+tanx1-tanx)2=tan(π4+x)tan(π4-x)


Prove the following:

cos(x-y)cos(x+y)=cotxcoty+1cotxcoty-1


Prove the following:

cos15-sin15cos15+sin15=13


If sin A = -513,π<A<3π2 and cos B = 35,3π2<B<2π find cos (A – B)


If sin A = -513,π<A<3π2 and cos B = 35,3π2<B<2π find tan (A + B)


Select the correct option from the given alternatives :

The value of sin(n + 1) A sin (n + 2) A + cos(n + 1) A cos(n + 2) A is equal to


Prove the following:

If sin 2A = λsin 2B then prove that tan(A+B)tan(A-B)=λ+1λ-1


Prove the following:

tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A


The value of tan-1(13)+tan-1(15)+tan-1(17)+tan-1(18)is ______.


tan A +2 tan 2A + 4 tan 4A + 8 cot 8A = ?


If x cos θ + y sin θ = 5, x sin θ − y cos θ = 3, then the value of x2 + y2 = ____________.


The value of sin 163° cos 347° + sin 167° sin 73° is ______


In Δ ABC, if tan A + tan B + tan C = 6 and tan A tan B = 2 then tan C = ______.


3sin15+cos15 = ______


If equation tan θ + tan 2θ + tan θ tan 2θ = 1, θ = ______.


If sin A + cos A = 2, then the value of cos2 A is ______.


If A + B = 45°, then (cot A – 1) (cot B – 1) is equal to ______.


If tan α = k cot β, then cos(α-β)cos(α+β) is equal to ______.


lf sin θ = cos θ, then the value of 2 tan2 θ + sin2 θ – 1 is equal to ______.


cos70sin20+cos59sin31-8sin230 is equal to ______.


If cos(A – B) = 35 and tan A tan B = 2, then ______.


sin 4θ can be written as ______.


If cos 2B = cos(A+C)cos(A-C), then tan A, tan B, tan C are in ______.


The value of cot 70° + 4 cos 70° is ______.


tan 57° – tan 12° – tan 57° tan 12° is equal to ______.


The value of (cos α + cos β)2 + (sin α + sin β)2 is ______.


The value of tan 3A – tan 2A – tan A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.