Advertisements
Advertisements
Question
Prove the following:
3tan610° – 27 tan410° + 33tan210° = 1
Solution
Since, tan30° =
∴ tan3(10°) =
∴
Squaring both the sides, we get
∴
∴ 3(9tan210° – 6tan410°+ tan610°) = 1 – 6tan210° + 9tan410°
∴ 27tan210° – 18tan410° + 3tan610° = 1 – 6tan210° + 9tan410°
∴ 3tan610° – 27tan410° + 33tan210° = 1
APPEARS IN
RELATED QUESTIONS
Prove the following:
Prove the following:
Prove the following:
Prove the following:
If sin A =
If sin A =
Select the correct option from the given alternatives :
The value of sin(n + 1) A sin (n + 2) A + cos(n + 1) A cos(n + 2) A is equal to
Prove the following:
If sin 2A = λsin 2B then prove that
Prove the following:
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A
The value of
tan A +2 tan 2A + 4 tan 4A + 8 cot 8A = ?
If x cos θ + y sin θ = 5, x sin θ − y cos θ = 3, then the value of x2 + y2 = ____________.
The value of sin 163° cos 347° + sin 167° sin 73° is ______
In Δ ABC, if tan A + tan B + tan C = 6 and tan A tan B = 2 then tan C = ______.
If equation tan θ + tan 2θ + tan θ tan 2θ = 1, θ = ______.
If sin A + cos A =
If A + B = 45°, then (cot A – 1) (cot B – 1) is equal to ______.
If tan α = k cot β, then
lf sin θ = cos θ, then the value of 2 tan2 θ + sin2 θ – 1 is equal to ______.
If cos(A – B) =
sin 4θ can be written as ______.
If cos 2B =
The value of cot 70° + 4 cos 70° is ______.
tan 57° – tan 12° – tan 57° tan 12° is equal to ______.
The value of (cos α + cos β)2 + (sin α + sin β)2 is ______.
The value of tan 3A – tan 2A – tan A is ______.