Advertisements
Advertisements
Question
Prove the following:
If sin 2A = λsin 2B then prove that
Solution
sin 2A = λsin 2B
∴
∴
∴
∴
∴ tan(A + B) · cot(A – B) =
∴
APPEARS IN
RELATED QUESTIONS
Prove the following:
Prove the following:
sin [(n + 1)A]. sin [(n + 2)A] + cos [(n + 1)A]. cos [(n + 2)A] = cos A
If sin A =
If sin A =
If sin A =
Select the correct option from the given alternatives :
The value of sin(n + 1) A sin (n + 2) A + cos(n + 1) A cos(n + 2) A is equal to
Select the correct option from the given alternatives:
The value of
Select the correct option from the given alternatives :
The numerical value of tan 20° tan 80° cot 50° is equal to ______.
Prove the following:
Prove the following:
tanA + tan(60° + A) + tan(120° + A) = 3 tan 3A
Prove the following:
3tan610° – 27 tan410° + 33tan210° = 1
tan A +2 tan 2A + 4 tan 4A + 8 cot 8A = ?
cos (36° - A) cos (36° + A) + cos(54° + A) cos (54° - A) = ?
If A, B, C are the angles of ΔABC, then
If equation tan θ + tan 2θ + tan θ tan 2θ = 1, θ = ______.
If sin A + cos A =
The value of
If cos θ =
If cos(A – B) =
tan 100° + tan 125° + tan 100° tan 125° = ______.
If
sin 4θ can be written as ______.
cos2 76° + cos2 16° – cos 76° cos 16° is equal to ______.
The value of
The value of cot 70° + 4 cos 70° is ______.
If A, B, C, D are the angles of a cyclic quadrilateral, then cos A + cos B + cos C + cos D is equal to ______.
If ABCD is a cyclic quadrilateral, then the value of cos A – cos B + cos C – cos D is equal to ______.
cos(36° − A) cos(36° + A) + cos(54° + A) cos(54° − A) = ______.
The value of tan 3A – tan 2A – tan A is ______.