Advertisements
Advertisements
Question
Prove the following:
sin [(n + 1)A]. sin [(n + 2)A] + cos [(n + 1)A]. cos [(n + 2)A] = cos A
Solution
L.H.S. = sin [(n + 1)A]. sin [(n + 2)A] + cos [(n + 1)A]. cos [(n + 2)A]
= cos [(n + 2)A]. cos [(n + 1)A] + sin [(n + 2)A]. sin [(n + 1)A]
Let (n + 2)A = a and (n + 1)A = b .......(i)
∴ L.H.S. = cos a. cos b + sin a. sin b
= cos (a − b)
= cos [(n + 2)A − (n + 1)A] .....[From (i)]
= cos [(n + 2 − n − 1)A]
= cos A
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following:
`tan(pi/4 + theta) = (1 + tan theta)/(1 - tan theta)`
Prove the following:
`(cos(x - y))/(cos(x + y)) = (cotx coty + 1)/(cotx coty - 1)`
Prove the following:
`(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ) = 1/sqrt(3)`
If tan A = `5/6, tan "B" = 1/11`, prove that A + B = `pi/4`
Select the correct option from the given alternatives :
The value of sin(n + 1) A sin (n + 2) A + cos(n + 1) A cos(n + 2) A is equal to
Select the correct option from the given alternatives:
The value of `costheta/(1 + sin theta)` is equal to .....
Select the correct option from the given alternatives :
The numerical value of tan 20° tan 80° cot 50° is equal to ______.
Prove the following:
If sin 2A = λsin 2B then prove that `(tan("A" + "B"))/(tan("A" - "B")) = (lambda + 1)/(lambda - 1)`
Prove the following:
3tan610° – 27 tan410° + 33tan210° = 1
Prove the following:
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A
Prove the following:
`tan^3x/(1 + tan^2x) + cot^3x/(1 + cot^2x)` = secx cosecx − 2sinx cosx
cos (36° - A) cos (36° + A) + cos(54° + A) cos (54° - A) = ?
\[\frac{1 - \text{sin} \theta + \text{cos} \theta}{1 - \text{sin} \theta - \text{cos} \theta}\] = ?
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______
`(sec8A - 1)/(sec4A - 1)` = ______
If `0 < β < α < π/4, cos (α + β) = 3/5` and cos (α – β) = `4/5`, then sin 2α is equal to ______.
If `α, β ∈ (0, π/2)`, sin α = `4/5` and cos (α + β) = `-12/13`, then sin β is equal to ______.
If tan α = k cot β, then `(cos(α - β))/(cos(α + β))` is equal to ______.
If α + β = `π/2` and β + γ = α, then the value of tan α is ______.
If cos(81° + θ) = `sin(k/3 - θ)`, then k is equal to ______.
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin 31^circ) - 8 sin^2 30^circ` is equal to ______.
If cos θ = `8/17` and θ lies in the 1st quadrant, then the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ) is ______.
If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then ______.
If cos(A – B) = `3/5` and tan A tan B = 2, then ______.
tan 100° + tan 125° + tan 100° tan 125° = ______.
If `π/2 < α < π, π < β < (3π)/2`; sin α = `15/17` and tan β = `12/5`, then the value of sin(β – α) is ______.
sin 4θ can be written as ______.
If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.
cos(36° − A) cos(36° + A) + cos(54° + A) cos(54° − A) = ______.
`1/3(sqrt(3) cos 23^circ - sin 23^circ)` is equal to ______.
tan 57° – tan 12° – tan 57° tan 12° is equal to ______.
The value of (cos α + cos β)2 + (sin α + sin β)2 is ______.
cos2 x + cos2 y – 2 cos x cos y cos (x + y) is equal to ______.
The value of tan 3A – tan 2A – tan A is ______.