English

Prove the following: 2cos2A+12cos2A-1 = tan(60° + A) tan(60° − A) - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following:

`(2cos2"A" + 1)/(2cos2"A" - 1)` = tan(60° + A) tan(60° − A)

Sum

Solution

R.H.S. = tan(60° + A) tan(60° − A)

= `(sin(60^circ + "A")sin(60^circ - "A"))/(cos(60^circ + "A")cos(60^circ - "A")`

= `(2sin(60^circ + "A")sin(60^circ - "A"))/(2cos(60^circ + "A")cos(60^circ - "A")`

= `(cos[60^circ + "A" - (60^circ - "A")] - cos(60^circ + "A" + 60^circ - "A"))/(cos(60^circ + "A" + 60^circ - "A") + cos[60^circ + "A" - (60^circ - "A")]`

= `(cos2"A" - cos120^circ)/(cos120^circ - cos2"A")`

= `(cos2"A" - cos(180^circ - 60^circ))/(cos(180^circ - 60^circ) + cos2"A")`

= `(cos2"A" - (- cos 60^circ))/(- cos60^circ + cos2"A")`

= `(cos2"A" + 1/2)/(-1/2 + cos2"A")`

= `(2cos2"A" + 1)/(2cos2"A" - 1)`

= L.H.S.

shaalaa.com
Trigonometric Functions of Sum and Difference of Angles
  Is there an error in this question or solution?
Chapter 3: Trigonometry - 2 - Miscellaneous Exercise 3 [Page 57]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 3 Trigonometry - 2
Miscellaneous Exercise 3 | Q II. (13) | Page 57

RELATED QUESTIONS

Prove the following:

`sqrt(2)cos (pi/4 - "A")` = cos A + sin A


If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find sin (A + B)


Select the correct option from the given alternatives :

The value of sin(n + 1) A sin (n + 2) A + cos(n + 1) A cos(n + 2) A is equal to


Select the correct option from the given alternatives :

If tan A – tan B = x and cot B – cot A = y, then cot (A – B) = _____


Select the correct option from the given alternatives:

The value of `costheta/(1 + sin theta)` is equal to .....


Select the correct option from the given alternatives :

The numerical value of tan 20° tan 80° cot 50° is equal to ______.


Prove the following:

If sin 2A = λsin 2B then prove that `(tan("A" + "B"))/(tan("A" - "B")) = (lambda + 1)/(lambda - 1)`


Prove the following:

tanA + tan(60° + A) + tan(120° + A) = 3 tan 3A


Prove the following:

3tan610° – 27 tan410° + 33tan210° = 1


Prove the following:

`tan^3x/(1 + tan^2x) + cot^3x/(1 + cot^2x)` = secx cosecx − 2sinx cosx 


`(cos 25^circ + sin 25^circ)/(cos 25^circ - sin 25^circ)` = ?


\[\frac{1 - \text{sin} \theta + \text{cos} \theta}{1 - \text{sin} \theta - \text{cos} \theta}\] = ?


If x cos θ + y sin θ = 5, x sin θ − y cos θ = 3, then the value of x2 + y2 = ____________.


The value of sin 163° cos 347° + sin 167° sin 73° is ______


In Δ ABC, if tan A + tan B + tan C = 6 and tan A tan B = 2 then tan C = ______.


If A, B, C are the angles of ΔABC, then `tan  A/2 tan  B/2 + tan  B/2 tan  C/2 + tan  C/2 tan  A/2` = ______ 


`(sin8A + sin2A)/(cos2A - cos8A)` is equal to ______ 


If sin A + cos A = `sqrt(2)`, then the value of cos2 A is ______.


If `0 < β < α < π/4, cos (α + β) = 3/5` and cos (α – β) = `4/5`, then sin 2α is equal to ______.


The value of `tan 40^circ + tan 20^circ + sqrt(3) tan 20^circ tan 40^circ` is ______.


If `α, β ∈ (0, π/2)`, sin α = `4/5` and cos (α + β) = `-12/13`, then sin β is equal to ______.


If A + B = 45°, then (cot A – 1) (cot B – 1) is equal to ______.


If α + β = `π/2` and β + γ = α, then the value of tan α is ______.


`(cos 9^circ +  sin 9^circ)/(cos 9^circ -  sin 9^circ)` is equal to ______.


`(tan 80^circ -  tan 10^circ)/(tan 70^circ)` is equal to ______.


`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin 31^circ) - 8 sin^2 30^circ` is equal to ______.


If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then ______.


tan 100° + tan 125° + tan 100° tan 125° = ______.


If tan A – tan B = x and cot B – cot A = y, then cot(A – B) = ______.


cos2 76° + cos2 16° – cos 76° cos 16° is equal to ______.


If A, B, C, D are the angles of a cyclic quadrilateral, then cos A + cos B + cos C + cos D is equal to ______.


tan 57° – tan 12° – tan 57° tan 12° is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×