Advertisements
Advertisements
प्रश्न
Prove the following:
tanA + tan(60° + A) + tan(120° + A) = 3 tan 3A
उत्तर
L.H.S. = tanA + tan(60° + A) + tan(120° + A)
= `tan"A" + (tan60^circ + tan"A")/(1 - tan60^circ*tan"A") + (tan120^circ + tan"A")/(1 - tan120^circ*tan"A")`
= `tan"A" + (sqrt(3) + tan"A")/(1 - sqrt(3)tan"A") + (-sqrt(3) + tan"A")/(1 + sqrt(3)tan"A") ...[because tan60^circ = sqrt(3) and tan120^circ = tan(180^circ - 60^circ) = -tan60^circ = -sqrt(3)]`
= `(tan"A"(1 - 3tan^2"A") + (sqrt(3) + tan"A")(1 + sqrt(3)tan"A") + (-sqrt(3) + tan"A")(1 - sqrt(3)tan"A"))/((1 - sqrt(3)tan"A")(1 + sqrt(3)tan"A")`
= `(tan"A" - 3tan^3"A" + sqrt(3) + 3tan"A" + tan"A" + sqrt(3)tan^2"A" - sqrt(3) + 3tan"A" + tan"A" + sqrt(3)tan^2"A")/(1 - 3tan^2"A")`
= `(9tan"A" - 3tan^3"A")/(1 - 3tan^2"A")`
= `3((3tan"A" - tan^3"A")/(1 - 3tan^2"A"))`
= 3 tan 3A
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
`(cos(x - y))/(cos(x + y)) = (cotx coty + 1)/(cotx coty - 1)`
Prove the following:
`(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ) = 1/sqrt(3)`
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find sin (A + B)
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find cos (A – B)
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find tan (A + B)
Select the correct option from the given alternatives:
The value of `costheta/(1 + sin theta)` is equal to .....
Prove the following:
If sin 2A = λsin 2B then prove that `(tan("A" + "B"))/(tan("A" - "B")) = (lambda + 1)/(lambda - 1)`
Prove the following:
3tan610° – 27 tan410° + 33tan210° = 1
Prove the following:
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A
Prove the following:
`tan^3x/(1 + tan^2x) + cot^3x/(1 + cot^2x)` = secx cosecx − 2sinx cosx
If f(x) = log (sec x + tan x), then `"f'"(π/4)` = ____________.
The value of sin 163° cos 347° + sin 167° sin 73° is ______
`(tanA + secA - 1)/(tanA - secA + 1)` = ______
If A, B, C are the angles of ΔABC, then `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` = ______
If `(cos(x - y))/(cos(x + y)) = ("a" + "b")/("a" - "b")`, then cot x × cot y is equal to ______.
If `2sin(θ + π/3) = cos(θ - π/6)`, then tan θ, = ______.
The value of cos 15° is ______.
If `0 < β < α < π/4, cos (α + β) = 3/5` and cos (α – β) = `4/5`, then sin 2α is equal to ______.
The value of `tan 40^circ + tan 20^circ + sqrt(3) tan 20^circ tan 40^circ` is ______.
If tan α = k cot β, then `(cos(α - β))/(cos(α + β))` is equal to ______.
`(cos 9^circ + sin 9^circ)/(cos 9^circ - sin 9^circ)` is equal to ______.
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin 31^circ) - 8 sin^2 30^circ` is equal to ______.
If cos θ = `8/17` and θ lies in the 1st quadrant, then the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ) is ______.
tan 100° + tan 125° + tan 100° tan 125° = ______.
If tan A – tan B = x and cot B – cot A = y, then cot(A – B) = ______.
If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.
cos2 76° + cos2 16° – cos 76° cos 16° is equal to ______.
The value of `sin π/16 sin (3π)/16 sin (5π)/16 sin (7π)/16` is ______.
If A, B, C, D are the angles of a cyclic quadrilateral, then cos A + cos B + cos C + cos D is equal to ______.
`1/3(sqrt(3) cos 23^circ - sin 23^circ)` is equal to ______.
tan 57° – tan 12° – tan 57° tan 12° is equal to ______.
The value of (cos α + cos β)2 + (sin α + sin β)2 is ______.