Advertisements
Advertisements
प्रश्न
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find cos (A – B)
उत्तर
Given, sin A = `(-5)/13`
We know that,
cos2A = 1 – sin2A = `1 - (-5/13)^2`
= `1 - 25/169`
= `144/169`
∴ cos A = `±12/13`
Since, `pi < "A" < (3pi)/2`
∴ ‘A’ lies in the 3rd quadrant
∴ cos A < 0
∴ cos A = `(-12)/13`
Also, cos B = `3/5`
∴ sin2B = 1 – cos2B = `1 - (3/5)^2`
= `1 - 9/25`
= `16/25`
∴ sin B = `±4/5`
Since, `(3pi)/2 < "B" < 2pi`
∴ ‘B’ lies in the 4th quadrant.
∴ sin B < 0
∴ sin B = `(-4)/5`
cos(A – B) = cosA cosB +sinA sinB
= `(-12/13)(3/5)+(-5/13)(-4/5)`
= `-36/65+20/65`
= `-16/65`
APPEARS IN
संबंधित प्रश्न
Prove the following:
`sqrt(2)cos (pi/4 - "A")` = cos A + sin A
Prove the following:
`(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ) = 1/sqrt(3)`
If tan A = `5/6, tan "B" = 1/11`, prove that A + B = `pi/4`
Select the correct option from the given alternatives :
The numerical value of tan 20° tan 80° cot 50° is equal to ______.
Prove the following:
If sin 2A = λsin 2B then prove that `(tan("A" + "B"))/(tan("A" - "B")) = (lambda + 1)/(lambda - 1)`
Prove the following:
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A
tan A +2 tan 2A + 4 tan 4A + 8 cot 8A = ?
\[\frac{1 - \text{sin} \theta + \text{cos} \theta}{1 - \text{sin} \theta - \text{cos} \theta}\] = ?
If x cos θ + y sin θ = 5, x sin θ − y cos θ = 3, then the value of x2 + y2 = ____________.
If f(x) = log (sec x + tan x), then `"f'"(π/4)` = ____________.
The value of sin 163° cos 347° + sin 167° sin 73° is ______
In Δ ABC, if tan A + tan B + tan C = 6 and tan A tan B = 2 then tan C = ______.
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______
`(sin8A + sin2A)/(cos2A - cos8A)` is equal to ______
If `(cos(x - y))/(cos(x + y)) = ("a" + "b")/("a" - "b")`, then cot x × cot y is equal to ______.
If `2sin(θ + π/3) = cos(θ - π/6)`, then tan θ, = ______.
If sin A + cos A = `sqrt(2)`, then the value of cos2 A is ______.
The value of cos 15° is ______.
If `0 < β < α < π/4, cos (α + β) = 3/5` and cos (α – β) = `4/5`, then sin 2α is equal to ______.
The value of `tan 40^circ + tan 20^circ + sqrt(3) tan 20^circ tan 40^circ` is ______.
If `α, β ∈ (0, π/2)`, sin α = `4/5` and cos (α + β) = `-12/13`, then sin β is equal to ______.
If cos (α + β) = `4/5` and sin (α – β) = `5/13`, where `0 ≤ α, β ≤ π/4`, then tan 2α is equal to ______.
If A + B = 45°, then (cot A – 1) (cot B – 1) is equal to ______.
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin 31^circ) - 8 sin^2 30^circ` is equal to ______.
If cos θ = `8/17` and θ lies in the 1st quadrant, then the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ) is ______.
If cos(A – B) = `3/5` and tan A tan B = 2, then ______.
If `π/2 < α < π, π < β < (3π)/2`; sin α = `15/17` and tan β = `12/5`, then the value of sin(β – α) is ______.
If tan A – tan B = x and cot B – cot A = y, then cot(A – B) = ______.
sin 4θ can be written as ______.
If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.
cos2 76° + cos2 16° – cos 76° cos 16° is equal to ______.
The value of cot 70° + 4 cos 70° is ______.
If ABCD is a cyclic quadrilateral, then the value of cos A – cos B + cos C – cos D is equal to ______.
cos(36° − A) cos(36° + A) + cos(54° + A) cos(54° − A) = ______.
`1/3(sqrt(3) cos 23^circ - sin 23^circ)` is equal to ______.
tan 57° – tan 12° – tan 57° tan 12° is equal to ______.