Advertisements
Advertisements
प्रश्न
Prove the following:
`(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ) = 1/sqrt(3)`
उत्तर
L.H.S. = `(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ)`
Dividing numerator and denominator by cos15°, we get
L.H.S. = `(1 - (sin15^circ)/(cos15^circ))/(1 + (sin15^circ)/(cos15^circ))`
= `(1 - tan15^circ)/(1 + tan15^circ)`
= `(tan45^circ - tan15^circ)/(1 + (tan45^circ)(tan15^circ))` ...[∵ tan 45° = 1]
= tan(45° – 15°)
= tan30°
= `1/sqrt(3)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
`tan(pi/4 + theta) = (1 + tan theta)/(1 - tan theta)`
Prove the following:
`(cos(x - y))/(cos(x + y)) = (cotx coty + 1)/(cotx coty - 1)`
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find sin (A + B)
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find cos (A – B)
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find tan (A + B)
If tan A = `5/6, tan "B" = 1/11`, prove that A + B = `pi/4`
Select the correct option from the given alternatives :
If tan A – tan B = x and cot B – cot A = y, then cot (A – B) = _____
Select the correct option from the given alternatives :
The numerical value of tan 20° tan 80° cot 50° is equal to ______.
Prove the following:
`(2cos2"A" + 1)/(2cos2"A" - 1)` = tan(60° + A) tan(60° − A)
Prove the following:
3tan610° – 27 tan410° + 33tan210° = 1
Prove the following:
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A
cos (36° - A) cos (36° + A) + cos(54° + A) cos (54° - A) = ?
If f(x) = log (sec x + tan x), then `"f'"(π/4)` = ____________.
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______
If A, B, C are the angles of ΔABC, then `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` = ______
`(sin8A + sin2A)/(cos2A - cos8A)` is equal to ______
If ABCD is a cyclic quadrilateral, then cos A + cos B + cos C + cos D = ______.
If equation tan θ + tan 2θ + tan θ tan 2θ = 1, θ = ______.
If `2sin(θ + π/3) = cos(θ - π/6)`, then tan θ, = ______.
The value of `tan 40^circ + tan 20^circ + sqrt(3) tan 20^circ tan 40^circ` is ______.
If cos (α + β) = `4/5` and sin (α – β) = `5/13`, where `0 ≤ α, β ≤ π/4`, then tan 2α is equal to ______.
If A + B = 45°, then (cot A – 1) (cot B – 1) is equal to ______.
`(cos 9^circ + sin 9^circ)/(cos 9^circ - sin 9^circ)` is equal to ______.
`(tan 80^circ - tan 10^circ)/(tan 70^circ)` is equal to ______.
If cos(81° + θ) = `sin(k/3 - θ)`, then k is equal to ______.
If cos θ = `8/17` and θ lies in the 1st quadrant, then the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ) is ______.
If `π/2 < α < π, π < β < (3π)/2`; sin α = `15/17` and tan β = `12/5`, then the value of sin(β – α) is ______.
If tan A – tan B = x and cot B – cot A = y, then cot(A – B) = ______.
sin 4θ can be written as ______.
If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.
cos2 76° + cos2 16° – cos 76° cos 16° is equal to ______.
cos(36° − A) cos(36° + A) + cos(54° + A) cos(54° − A) = ______.
tan 57° – tan 12° – tan 57° tan 12° is equal to ______.
cos2 x + cos2 y – 2 cos x cos y cos (x + y) is equal to ______.