Advertisements
Advertisements
प्रश्न
Prove the following:
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A
उत्तर
L.H.S. = tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A
= `tan"A" + 2tan2"A" + 4tan4"A" + 8/(tan8"A")`
= `tan"A" + 2tan2"A" + 4tan4"A" + (8(1 - tan^2 4"A"))/(2tan4"A") ...[because tan2theta = (2tantheta)/(1 - tan^2theta)]`
= `tan"A" + 2tan2"A" + (8tan^2 4"A" + 8 - 8tan^2 4"A")/(2tan4"A")`
= `tan"A" + 2tan2"A" + 4/(tan4"A")`
= `tan"A" + 2tan2"A" + (4(1 - tan^2 2"A"))/(2tan2"A")`
= `tan"A" + (4tan^2 2"A" + 4 - 4tan^2 2"A")/(2tan2"A")`
= `tan"A" + 2/(tan2"A")`
= `tan"A" + (2(1 - tan^2"A"))/(2tan"A")`
= `(2tan^2"A" + 2 - 2tan^2"A")/(2tan"A")`
= `1/tan"A"`
= cot A
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
`tan(pi/4 + theta) = (1 + tan theta)/(1 - tan theta)`
Prove the following:
sin [(n + 1)A]. sin [(n + 2)A] + cos [(n + 1)A]. cos [(n + 2)A] = cos A
Prove the following:
`sqrt(2)cos (pi/4 - "A")` = cos A + sin A
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find cos (A – B)
If tan A = `5/6, tan "B" = 1/11`, prove that A + B = `pi/4`
Select the correct option from the given alternatives :
The value of sin(n + 1) A sin (n + 2) A + cos(n + 1) A cos(n + 2) A is equal to
Prove the following:
If sin 2A = λsin 2B then prove that `(tan("A" + "B"))/(tan("A" - "B")) = (lambda + 1)/(lambda - 1)`
Prove the following:
tanA + tan(60° + A) + tan(120° + A) = 3 tan 3A
`(cos 25^circ + sin 25^circ)/(cos 25^circ - sin 25^circ)` = ?
tan A +2 tan 2A + 4 tan 4A + 8 cot 8A = ?
cos (36° - A) cos (36° + A) + cos(54° + A) cos (54° - A) = ?
If x cos θ + y sin θ = 5, x sin θ − y cos θ = 3, then the value of x2 + y2 = ____________.
In Δ ABC, if tan A + tan B + tan C = 6 and tan A tan B = 2 then tan C = ______.
`sqrt3 sin15^circ + cos15^circ` = ______
`(tanA + secA - 1)/(tanA - secA + 1)` = ______
If ABCD is a cyclic quadrilateral, then cos A + cos B + cos C + cos D = ______.
If `2sin(θ + π/3) = cos(θ - π/6)`, then tan θ, = ______.
If A + B = 45°, then (cot A – 1) (cot B – 1) is equal to ______.
If tan α = k cot β, then `(cos(α - β))/(cos(α + β))` is equal to ______.
`(cos 9^circ + sin 9^circ)/(cos 9^circ - sin 9^circ)` is equal to ______.
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin 31^circ) - 8 sin^2 30^circ` is equal to ______.
If cos θ = `8/17` and θ lies in the 1st quadrant, then the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ) is ______.
If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then ______.
tan 100° + tan 125° + tan 100° tan 125° = ______.
If tan A – tan B = x and cot B – cot A = y, then cot(A – B) = ______.
If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.
cos2 76° + cos2 16° – cos 76° cos 16° is equal to ______.
If ABCD is a cyclic quadrilateral, then the value of cos A – cos B + cos C – cos D is equal to ______.
`1/3(sqrt(3) cos 23^circ - sin 23^circ)` is equal to ______.
The value of (cos α + cos β)2 + (sin α + sin β)2 is ______.
cos2 x + cos2 y – 2 cos x cos y cos (x + y) is equal to ______.