Advertisements
Advertisements
प्रश्न
Prove the following:
`(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ) = 1/sqrt(3)`
उत्तर
L.H.S. = `(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ)`
Dividing numerator and denominator by cos15°, we get
L.H.S. = `(1 - (sin15^circ)/(cos15^circ))/(1 + (sin15^circ)/(cos15^circ))`
= `(1 - tan15^circ)/(1 + tan15^circ)`
= `(tan45^circ - tan15^circ)/(1 + (tan45^circ)(tan15^circ))` ...[∵ tan 45° = 1]
= tan(45° – 15°)
= tan30°
= `1/sqrt(3)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
`tan(pi/4 + theta) = (1 + tan theta)/(1 - tan theta)`
Prove the following:
`((1 + tan x)/(1 - tan x))^2 = tan(pi/4 + x)/(tan(pi/4 - x))`
Prove the following:
sin [(n + 1)A]. sin [(n + 2)A] + cos [(n + 1)A]. cos [(n + 2)A] = cos A
Prove the following:
`sqrt(2)cos (pi/4 - "A")` = cos A + sin A
Prove the following:
`(cos(x - y))/(cos(x + y)) = (cotx coty + 1)/(cotx coty - 1)`
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find sin (A + B)
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find cos (A – B)
If tan A = `5/6, tan "B" = 1/11`, prove that A + B = `pi/4`
Prove the following:
If sin 2A = λsin 2B then prove that `(tan("A" + "B"))/(tan("A" - "B")) = (lambda + 1)/(lambda - 1)`
Prove the following:
`(2cos2"A" + 1)/(2cos2"A" - 1)` = tan(60° + A) tan(60° − A)
`(cos 25^circ + sin 25^circ)/(cos 25^circ - sin 25^circ)` = ?
tan A +2 tan 2A + 4 tan 4A + 8 cot 8A = ?
\[\frac{1 - \text{sin} \theta + \text{cos} \theta}{1 - \text{sin} \theta - \text{cos} \theta}\] = ?
`sqrt3 sin15^circ + cos15^circ` = ______
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______
`(tanA + secA - 1)/(tanA - secA + 1)` = ______
If `(cos(x - y))/(cos(x + y)) = ("a" + "b")/("a" - "b")`, then cot x × cot y is equal to ______.
If `2sin(θ + π/3) = cos(θ - π/6)`, then tan θ, = ______.
If `α, β ∈ (0, π/2)`, sin α = `4/5` and cos (α + β) = `-12/13`, then sin β is equal to ______.
If cos (α + β) = `4/5` and sin (α – β) = `5/13`, where `0 ≤ α, β ≤ π/4`, then tan 2α is equal to ______.
`(tan 80^circ - tan 10^circ)/(tan 70^circ)` is equal to ______.
If cos(81° + θ) = `sin(k/3 - θ)`, then k is equal to ______.
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin 31^circ) - 8 sin^2 30^circ` is equal to ______.
If cos θ = `8/17` and θ lies in the 1st quadrant, then the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ) is ______.
tan 100° + tan 125° + tan 100° tan 125° = ______.
If `π/2 < α < π, π < β < (3π)/2`; sin α = `15/17` and tan β = `12/5`, then the value of sin(β – α) is ______.
The value of cot 70° + 4 cos 70° is ______.
If A, B, C, D are the angles of a cyclic quadrilateral, then cos A + cos B + cos C + cos D is equal to ______.
`1/3(sqrt(3) cos 23^circ - sin 23^circ)` is equal to ______.
tan 57° – tan 12° – tan 57° tan 12° is equal to ______.
cos2 x + cos2 y – 2 cos x cos y cos (x + y) is equal to ______.