Advertisements
Advertisements
प्रश्न
Prove the following:
tanA + tan(60° + A) + tan(120° + A) = 3 tan 3A
उत्तर
L.H.S. = tanA + tan(60° + A) + tan(120° + A)
= `tan"A" + (tan60^circ + tan"A")/(1 - tan60^circ*tan"A") + (tan120^circ + tan"A")/(1 - tan120^circ*tan"A")`
= `tan"A" + (sqrt(3) + tan"A")/(1 - sqrt(3)tan"A") + (-sqrt(3) + tan"A")/(1 + sqrt(3)tan"A") ...[because tan60^circ = sqrt(3) and tan120^circ = tan(180^circ - 60^circ) = -tan60^circ = -sqrt(3)]`
= `(tan"A"(1 - 3tan^2"A") + (sqrt(3) + tan"A")(1 + sqrt(3)tan"A") + (-sqrt(3) + tan"A")(1 - sqrt(3)tan"A"))/((1 - sqrt(3)tan"A")(1 + sqrt(3)tan"A")`
= `(tan"A" - 3tan^3"A" + sqrt(3) + 3tan"A" + tan"A" + sqrt(3)tan^2"A" - sqrt(3) + 3tan"A" + tan"A" + sqrt(3)tan^2"A")/(1 - 3tan^2"A")`
= `(9tan"A" - 3tan^3"A")/(1 - 3tan^2"A")`
= `3((3tan"A" - tan^3"A")/(1 - 3tan^2"A"))`
= 3 tan 3A
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
`tan(pi/4 + theta) = (1 + tan theta)/(1 - tan theta)`
Prove the following:
`((1 + tan x)/(1 - tan x))^2 = tan(pi/4 + x)/(tan(pi/4 - x))`
Prove the following:
`sqrt(2)cos (pi/4 - "A")` = cos A + sin A
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find sin (A + B)
If tan A = `5/6, tan "B" = 1/11`, prove that A + B = `pi/4`
Select the correct option from the given alternatives:
The value of `costheta/(1 + sin theta)` is equal to .....
Select the correct option from the given alternatives :
The numerical value of tan 20° tan 80° cot 50° is equal to ______.
Prove the following:
3tan610° – 27 tan410° + 33tan210° = 1
cos (36° - A) cos (36° + A) + cos(54° + A) cos (54° - A) = ?
If x cos θ + y sin θ = 5, x sin θ − y cos θ = 3, then the value of x2 + y2 = ____________.
If f(x) = log (sec x + tan x), then `"f'"(π/4)` = ____________.
In Δ ABC, if tan A + tan B + tan C = 6 and tan A tan B = 2 then tan C = ______.
`sqrt3 sin15^circ + cos15^circ` = ______
`(tanA + secA - 1)/(tanA - secA + 1)` = ______
If A, B, C are the angles of ΔABC, then `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` = ______
If `2sin(θ + π/3) = cos(θ - π/6)`, then tan θ, = ______.
The value of cos 15° is ______.
The value of `tan 40^circ + tan 20^circ + sqrt(3) tan 20^circ tan 40^circ` is ______.
If cos (α + β) = `4/5` and sin (α – β) = `5/13`, where `0 ≤ α, β ≤ π/4`, then tan 2α is equal to ______.
If cos(81° + θ) = `sin(k/3 - θ)`, then k is equal to ______.
lf sin θ = cos θ, then the value of 2 tan2 θ + sin2 θ – 1 is equal to ______.
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin 31^circ) - 8 sin^2 30^circ` is equal to ______.
If cos θ = `8/17` and θ lies in the 1st quadrant, then the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ) is ______.
If tan A – tan B = x and cot B – cot A = y, then cot(A – B) = ______.
If cos 2B = `(cos(A + C))/(cos(A - C))`, then tan A, tan B, tan C are in ______.
The value of `sin π/16 sin (3π)/16 sin (5π)/16 sin (7π)/16` is ______.
The value of cot 70° + 4 cos 70° is ______.
If A, B, C, D are the angles of a cyclic quadrilateral, then cos A + cos B + cos C + cos D is equal to ______.
tan 57° – tan 12° – tan 57° tan 12° is equal to ______.
The value of (cos α + cos β)2 + (sin α + sin β)2 is ______.
cos2 x + cos2 y – 2 cos x cos y cos (x + y) is equal to ______.