English

Prove the following: 3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6x + cos6x) = 13 - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following:

3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6x + cos6x) = 13

Sum

Solution

(sin x – cos x)4 

= [(sin x – cos x)2]2

= (sin2x + cos2x – 2 sin x cos x)2

= (1 – 2 sin x cos x)2

= 1 – 4 sin x cos x + 4 sin2x cos2x

(sin x + cos x)2

= sin2x + cos2x + 2 sin x cos x

= 1 + 2 sin x cos x

sin6x + cos6x

= (sin2x)3 + (cos2x)3

= (sin2x + cos2x)3 – 3 sin2x cos2x (sin2x + cos2x) ...[∵ a3 + b3 = (a + b)3 – 3ab (a + b)]

= 13 – 3 sin2x cos2x (1)

= 1 – 3 sin2x cos2x

 L.H.S. = 3 (sin x – cos x)4 + 6 (sin x + cosx)2 + 4 (sin6x + cos6x)

= 3 (1 – 4 sin x cos x + 4 sin2x cos2x) + 6 (1 + 2 sin x cos x) + 4 (1 – 3 sin2x cos2x)

=  3 – 12 sin x cos x + 12 sin2x cos2x + 6 + 12 sin x cos x + 4 – 12 sin2x cos2x

= 13

= R.H.S.

shaalaa.com
Factorization Formulae - Formulae for Conversion of Product in to Sum Or Difference
  Is there an error in this question or solution?
Chapter 3: Trigonometry - 2 - Miscellaneous Exercise 3 [Page 58]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 3 Trigonometry - 2
Miscellaneous Exercise 3 | Q II. (17) | Page 58
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×