English

Prove the following : cos 20° cos 40° cos 60° cos 80° = 116 - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following :

cos 20° cos 40° cos 60° cos 80° = 116

Sum

Solution

L.H.S. = cos 20°· cos 40° · cos 60° · cos 80°

=12×(2 cos20 cos40)×12×cos80    ...[2cosAcosB=cos(A + B)+cos(AB)]

=12[cos60+cos(-20)]×12×cos80

=12(cos60+ cos20)×12×cos80

=12(12+cos20)×12cos80

=18cos80+14cos20 cos80

=18cos80+14×12(2cos20 cos80)  ...[2cosA+cosB=cos(A + B)+cos(A - B)]

=18cos80+18[cos100+cos(-60)]

=18cos80+18[cos(180-80)+cos60]

=18cos80+18[-cos80+12]

=18cos80-18cos80+116

=18cos80-18cos80+116

=116

= R.H.S.

shaalaa.com
Factorization Formulae - Formulae for Conversion of Product in to Sum Or Difference
  Is there an error in this question or solution?
Chapter 3: Trigonometry - 2 - Exercise 3.4 [Page 51]
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.