Advertisements
Advertisements
Question
Prove the following :
sin 6x + sin 4x – sin 2x = 4 cos x sin 2x cos 3x
Solution
L.H.S. = sin 6x + sin 4x – sin 2x
= `2sin((6x + 4x)/2) cos((6x - 4x)/2) - 2sinx cosx`
= 2 sin 5x cos x – 2 sin x cos x
= 2 cos (sin 5x – sin x)
= `2cosx [2cos((5x + x)/2)sin((5x - x)/2)]`
= 2 cos x (2 cos 3x sin 2x)
= 4 cos x sin 2x cos 3x
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Express the following as a sum or difference of two trigonometric function:
2 sin 4x cos 2x
Express the following as a sum or difference of two trigonometric function:
2 cos 4θ cos 2θ
Express the following as a sum or difference of two trigonometric function:
2 cos 35° cos 75°
Prove the following :
`(sin2x + sin2y)/(sin2x - sin2y) = (tan(x + y))/(tan(x - y))`
Prove the following :
`(sinx - sin3x + sin5x - sin7x)/(cosx - cos3x - cos5x + cos7x)` = cot2x
Prove the following :
sin 18° cos 39° + sin 6° cos 15° = sin 24° cos 33°
Prove the following :
cos 20° cos 40° cos 60° cos 80° = `1/16`
Prove the following :
sin 20° sin 40° sin 60° sin 80° = `3/16`
Prove the following:
cos 12°+ cos 84° + cos 156° + cos 132° = `-1/2`
Prove the following:
`(cos9x - cos5x)/(sin17x - sin3x) = - (sin2x)/(cos10x)`
Prove the following:
3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6x + cos6x) = 13
1 +cos 20° +cos 30° +cos 50° = ______.