English

Prove the following : sin 18° cos 39° + sin 6° cos 15° = sin 24° cos 33° - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following :

sin 18° cos 39° + sin 6° cos 15° = sin 24° cos 33°

Sum

Solution

L.H.S. = sin 18°·cos 39° + sin 6°·cos 15°

= `1/2(2 cos 39^circ*sin18^circ +  2cos15^circ*sin6^circ)`

= `1/2[{sin(39^circ + 18^circ) - sin(39^circ - 18^circ)} + {sin(15^circ + 6^circ) - sin(15^circ - 6^circ)}]`

= `1/2[sin57^circ - sin21^circ +  sin21^circ -  sin9^circ]`

= `1/2(sin57^circ -  sin9^circ)`

= `1/2 xx 2cos((57^circ + 9^circ)/2)*sin((57^circ - 9^circ)/2)`

= cos 33°·sin 24°

= sin 24°·cos 33°

= R.H.S.

shaalaa.com
Factorization Formulae - Formulae for Conversion of Product in to Sum Or Difference
  Is there an error in this question or solution?
Chapter 3: Trigonometry - 2 - Exercise 3.4 [Page 51]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×