Advertisements
Advertisements
प्रश्न
Prove the following:
`tan^3x/(1 + tan^2x) + cot^3x/(1 + cot^2x)` = secx cosecx − 2sinx cosx
उत्तर
L.H.S. = `tan^3x/(1 + tan^2x) + cot^3x/(1 + cot^2x)`
= `tan^3x/sec^2x + cot^3x/("cosec"^2x)`
= `sin^3x/cos^3x xx cos^2x + cos^3x/sin^3x xx sin^2x`
= `sin^3x/cosx + cos^3x/sinx`
= `(sin^4x + cos^4x)/(sinx*cosx)`
= `((sin^2x + cos^2x)^2 - 2sin^2x cos^2x)/(sinx* cosx)` ...[∵ a2 + b2 = (a + b)2 – 2ab]
= `(1 - 2sin^2x cos^2x)/(sinx*cosx)`
= `1/(sinx* cosx) - (2sin^2xcos^2x)/(sinx*cosx)`
= secx · cosecx – 2sinx · cosx
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
`sqrt(2)cos (pi/4 - "A")` = cos A + sin A
Prove the following:
`(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ) = 1/sqrt(3)`
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find sin (A + B)
If sin A = `(-5)/13, pi < "A" < (3pi)/2` and cos B = `3/5, (3pi)/2 < "B" < 2pi` find tan (A + B)
Select the correct option from the given alternatives :
If tan A – tan B = x and cot B – cot A = y, then cot (A – B) = _____
Prove the following:
If sin 2A = λsin 2B then prove that `(tan("A" + "B"))/(tan("A" - "B")) = (lambda + 1)/(lambda - 1)`
Prove the following:
`(2cos2"A" + 1)/(2cos2"A" - 1)` = tan(60° + A) tan(60° − A)
Prove the following:
3tan610° – 27 tan410° + 33tan210° = 1
`(cos 25^circ + sin 25^circ)/(cos 25^circ - sin 25^circ)` = ?
The value of `tan^-1 (1/3) + tan^-1 (1/5) + tan^-1 (1/7) + tan^-1 (1/8)`is ______.
If x cos θ + y sin θ = 5, x sin θ − y cos θ = 3, then the value of x2 + y2 = ____________.
In Δ ABC, if tan A + tan B + tan C = 6 and tan A tan B = 2 then tan C = ______.
`sqrt3 sin15^circ + cos15^circ` = ______
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______
`(sec8A - 1)/(sec4A - 1)` = ______
If `(cos(x - y))/(cos(x + y)) = ("a" + "b")/("a" - "b")`, then cot x × cot y is equal to ______.
If `0 < β < α < π/4, cos (α + β) = 3/5` and cos (α – β) = `4/5`, then sin 2α is equal to ______.
The value of `tan 40^circ + tan 20^circ + sqrt(3) tan 20^circ tan 40^circ` is ______.
If A + B = 45°, then (cot A – 1) (cot B – 1) is equal to ______.
If tan α = k cot β, then `(cos(α - β))/(cos(α + β))` is equal to ______.
`(tan 80^circ - tan 10^circ)/(tan 70^circ)` is equal to ______.
If cos θ = `8/17` and θ lies in the 1st quadrant, then the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ) is ______.
If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then ______.
sin 4θ can be written as ______.
cos2 76° + cos2 16° – cos 76° cos 16° is equal to ______.
If ABCD is a cyclic quadrilateral, then the value of cos A – cos B + cos C – cos D is equal to ______.
`1/3(sqrt(3) cos 23^circ - sin 23^circ)` is equal to ______.
The value of (cos α + cos β)2 + (sin α + sin β)2 is ______.
cos2 x + cos2 y – 2 cos x cos y cos (x + y) is equal to ______.