हिंदी

Prove the following: cos 2π15cos 4π15cos 8π15cos 16π15=116 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove the following:

`cos  (2pi)/15 cos  (4pi)/15cos  (8pi)/15cos  (16pi)/15 = 1/16`

योग

उत्तर

L.H.S. = `cos  (2pi)/15 cos  (4pi)/15cos  (8pi)/15cos  (16pi)/15`

= `((2sin  (2pi)/15*cos  (2pi)/15)*cos  (4pi)/15*cos  (8pi)/15*cos  (16pi)/15)/(2sin  (2pi)/15)`

= `(sin  (4pi)/15*cos  (4pi)/15*cos  (8pi)/15*cos  (16pi)/15)/(2sin  (2pi)/15)`

= `((2sin  (4pi)/15*cos  (4pi)/15)cos  (8pi)/15*cos  (16pi)/15)/(4sin  (2pi)/15)`

= `(sin  (8pi)/15*cos  (8pi)/15*cos  (16pi)/15)/(4sin  (2pi)/15)`

= `((2sin  (8pi)/15*cos  (8pi)/15)cos  (16pi)/15)/(8sin  (2pi)/15)`

= `(sin  (16pi)/15*cos  (16pi)/15)/(8sin  (2pi)/15)`

= `(2sin  (16pi)/15*cos  (16pi)/15)/(16sin  (2pi)/15)`

= `(sin  (32pi)/15)/(16sin  (2pi)/15)`

= `(sin(2pi + (2pi)/15))/(16sin  (2pi)/15)`

= `(sin  (2pi)/15)/(16sin  (2pi)/15)`

= `1/16`

= R.H.S.

shaalaa.com
Factorization Formulae - Trigonometric Functions of Angles of a Triangle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - 2 - Miscellaneous Exercise 3 [पृष्ठ ५७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 3 Trigonometry - 2
Miscellaneous Exercise 3 | Q II. (3) | पृष्ठ ५७

संबंधित प्रश्न

In ΔABC, A + B + C = π show that 

cos 2A + cos 2B + cos 2C = –1 – 4 cos A cos B cos C


In ΔABC, A + B + C = π show that

sin A + sin B + sin C = `4cos  "A"/2  cos  "B"/2  cos  "C"/2 `


In ΔABC, A + B + C = π show that

cos A + cos B – cos C = `4cos  "A"/2  cos  "B"/2  sin  "C"/2 - 1`


In ΔABC, A + B + C = π show that

sin2A + sin2B − sin2C = 2 sin A sin B cos C


In ΔABC, A + B + C = π show that

`sin^2  "A"/2 + sin^2  "B"/2 - sin^2  "C"/2 = 1 - 2cos  "A"/2  cos  "B"/2 sin  "C"/2`


In ΔABC, A + B + C = π show that

tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C


In ΔABC, A + B + C = π show that

cos2A +cos2B – cos2C = 1 – 2 sin A sin B cos C


Prove the following:

If sin α sin β − cos α cos β + 1 = 0 then prove cot α tan β = −1


Prove the following:

`(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8) = 1/8`


Prove the following:

If A + B + C = `(3pi)/2`, then cos 2A + cos 2B + cos 2C = 1 − 4 sin A sin B sin C


Prove the following:

In any triangle ABC, sin A − cos B = cos C then ∠B = `pi/2`.


If A and Bare supplementary angles, then `sin^2  "A"/2 + sin^2  "B"/2` = ______.


In a ΔABC, A : B : C = 3 : 5 : 4. Then `a + b + csqrt2` is equal to ______


`(sin20^circ +2sin40^circ)/sin70^circ=` ______.


If A, B, C are the angles of ΔABC then cotA.cotB + cotB. cotC + cotC + cotA = ______.


Let A, B and C are the angles of a triangle and `tan(A/2) = 1/3, tan(B/2) = 2/3`. Then, `tan(C/2)` is equal to ______.


If A + B + C = 270°, then cos 2A + cos 2B + cos 2C is equal to ______.


If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______.


If A + B + C = π, then cos2 A + cos2 B + cos2 C is equal to ______.


If x + y + z = 180°, then cos 2x + cos 2y – cos 2z is equal to ______.


If A + B + C = 270°, then cos 2A + cos 2B + cos 2C + 4 sin A sin B sin C is equal to ______.


If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to ______.


If A + B = C = 180°, then the value of `cot  A/2 + cot  B/2 + cot  C/2` will be ______.


If cos A = cos B cos C and A + B + C = π, then the value of cot B cot C is ______.


lf A + B + C = π, then `cosA/(sinBsinC) + cosB/(sinCsinA) + cosC/(sinAsinB)` is equal to ______.


The value of cot A cot B + cot B cot C + cot C cot A is ______.


The value of `tan  A/2 tan  B/2 + tan  B/2 tan  C/2 + tan  C/2 tan  A/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×