हिंदी

In the Figure , Abcd is a Quadrilateral . F is a Point on Ad Such that Af = 2.1 Cm and Fd = 4.9 Cm - Mathematics

Advertisements
Advertisements

प्रश्न

In the figure , ABCD is a quadrilateral . F is a point on AD such that AF = 2.1 cm and FD = 4.9 cm . E and G are points on AC and AB respectively such that EF || CD and GE || BC . Find `("Ar" triangle "BCD")/("Ar" triangle "GEF")`

योग

उत्तर

In Δ ABC, GE || BC

∴ By BPT

`"AG"/"GB" = "AF"/"FD"`  .......(1)

Similarly, in Δ ACD 

`"AE"/"EC" = "AF"/"FD"`   .....(2)

From ( 1) and (2) 

`"AG"/"GB" = "AF"/"FD"`

∴ GE || BC  ...(By converse of BPT)

In Δ AGF and Δ ABD

∠ A = ∠ A   (common) 

∠ AFG = ∠ ADB (Corresponding angles) 

∴ Δ AGF ∼ Δ ABD  (AA corollary)

∴ `"AF"/"AD" = "GF"/"BD"`  (Similar sides of similar triangles)

`2.1/7 = "GF"/"BD"`

`3/10 = "GF"/"BD"`

`("Ar" triangle "GEF")/("Ar" triangle "BCD") = "GF"^2/"BD"^2`

[The ration of areas of two similar triangle is equal to the ratio of square of their corresponding sides.]

= `(3/10)^2`

= `9/100`

= 9 : 100

`("Ar" triangle "BCD") : ("Ar" triangle "GEF")` = 100 : 9

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Similarity - Exercise 15.1

APPEARS IN

फ्रैंक Mathematics - Part 2 [English] Class 10 ICSE
अध्याय 15 Similarity
Exercise 15.1 | Q 11
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×