हिंदी

In the Given Figure, O is a Point Inside a δPqr Such that ∠Pqr Such that ∠Por = 90°, Op = 6cm and Or = 8cm. If Pq = 24cm and Qr = 26cm, Prove that δPqr is Right-angled. - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, O is a point inside a ΔPQR such that ∠PQR such that ∠POR = 90°, OP = 6cm and OR = 8cm. If PQ = 24cm and QR = 26cm, prove that ΔPQR is right-angled. 

उत्तर

Applying Pythagoras theorem in right-angled triangle POR, we have: 

`PR^2=PO^2+OR^2` 

⟹ `PR^2=6^2+8^2=36+64=100` 

⟹ `PR=sqrt100=10 cm`  

IN Δ PQR,  

`PQ^2+PR^2=24^2+10^2=576+100=676` 

And `QR^2=26^2=676` 

∴` PQ^2+PR^2=QR^2` 

Therefore, by applying Pythagoras theorem, we can say that ΔPQR is right-angled at P. 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Triangles - Exercises 4

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 4 Triangles
Exercises 4 | Q 8

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In ΔABC, D and E are points on the sides AB and AC respectively such that DE || BC

If AD = 8cm, AB = 12 cm and AE = 12 cm, find CE.


In ΔABC, D and E are points on the sides AB and AC respectively such that DE || BC

If AD = 8x − 7, DB = 5x − 3, AE = 4x − 3 and EC = (3x − 1), find the value of x.


Find the height of an equilateral triangle of side 12cm.


State the midpoint theorem 


In fig, seg DE || sec BC, identify the correct statement.


A line is parallel to one side of triangle which intersects remaining two sides in two distinct points then that line divides sides in same proportion.

Given: In ΔABC line l || side BC and line l intersect side AB in P and side AC in Q.

To prove: `"AP"/"PB" = "AQ"/"QC"`

Construction: Draw CP and BQ

Proof: ΔAPQ and ΔPQB have equal height.

`("A"(Δ"APQ"))/("A"(Δ"PQB")) = (["______"])/"PB"`   .....(i)[areas in proportion of base]

`("A"(Δ"APQ"))/("A"(Δ"PQC")) = (["______"])/"QC"`  .......(ii)[areas in proportion of base]

ΔPQC and ΔPQB have [______] is common base.

Seg PQ || Seg BC, hence height of ΔAPQ and ΔPQB.

A(ΔPQC) = A(Δ______)    ......(iii)

`("A"(Δ"APQ"))/("A"(Δ"PQB")) = ("A"(Δ "______"))/("A"(Δ "______"))`   ......[(i), (ii), and (iii)]

`"AP"/"PB" = "AQ"/"QC"`   .......[(i) and (ii)]


ΔABC ~ ΔDEF. If AB = 4 cm, BC = 3.5 cm, CA = 2.5 cm and DF = 7.5 cm, then the perimeter of ΔDEF is ______.


In the given figure ΔABC ~ ΔPQR, PM is median of ΔPQR. If ar ΔABC = 289 cm², BC = 17 cm, MR = 6.5 cm then the area of ΔPQM is ______.


In the given figure, ABC is a triangle in which DE||BC. If AD = x, DB = x – 2, AE = x + 2 and EC = x – 1, then find the value of x.


State and prove Basic Proportionality theorem.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×