हिंदी

In the figure of question 2, if E is the mid-point of median AD, then prove that: Area (ΔABE) = 14 Area (ΔABC). - Mathematics

Advertisements
Advertisements

प्रश्न

In the figure of question 2, if E is the mid-point of median AD, then

prove that:

Area (ΔABE) = `1/4` Area (ΔABC).

योग

उत्तर

AD is the median of ΔABC.

Therefore it will divide ΔABC into two triangles of equal areas.

∴ Area(ΔABD) = Area(ΔACD) 

Area (ΔABD) = `1/2`Area(ΔABC)       ...(i)

In ΔABD, E is the mid-point of AD.

Therefore BE is the median.

∴ Area(ΔBED) = Area(ΔABE)

Area(ΔBED) = `1/2` Area(ΔABD)

Area(ΔBED) = `1/2 xx 1/2`Area(ΔABC)             ...[From equation (i)]

Area(ΔBED) = `1/4` Area(ΔABC)

shaalaa.com
Triangles with the Same Vertex and Bases Along the Same Line
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Area Theorems [Proof and Use] - Exercise 16 (B) [पृष्ठ २०१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 16 Area Theorems [Proof and Use]
Exercise 16 (B) | Q 3 | पृष्ठ २०१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×