हिंदी

In the Given Figure; Ad is Median of δAbc and E is Any Point on Median Ad. Prove that Area (δAbe) = Area (δAce) - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure; AD is median of ΔABC and E is any point on median AD.
Prove that Area (ΔABE) = Area (ΔACE).

योग

उत्तर

AD is the median of ΔABC. Therefore it will divide ΔABC into two triangles of equal areas.

∴ Area (ΔABD)= Area (ΔACD)           ...(i)

ED is the median of ΔEBC
∴Area (ΔEBD)= Area (ΔECD)            ...(ii)

Subtracting equation (ii) from (i), we obtain
Area (ΔABD)- Area (ΔEBD) = Area (ΔACD)- Area (ΔECD)
Area (ΔABE) = Area (ΔACE).
Hence proved

shaalaa.com
Triangles with the Same Vertex and Bases Along the Same Line
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Area Theorems [Proof and Use] - Exercise 16 (B) [पृष्ठ २०१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 16 Area Theorems [Proof and Use]
Exercise 16 (B) | Q 2 | पृष्ठ २०१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×