हिंदी

In the following figure, point D divides AB in the ratio 3 : 5. Find : AEEC ADAB AEACAlso, if: DE = 2.4 cm, find the length of BC. BC = 4.8 cm, find the length of DE. - Mathematics

Advertisements
Advertisements

प्रश्न

In the following figure, point D divides AB in the ratio 3 : 5. Find :

  1. `(AE)/(EC)`
  2. `(AD)/(AB)`
  3. `(AE)/(AC)`
    Also, if:
  4. DE = 2.4 cm, find the length of BC.
  5. BC = 4.8 cm, find the length of DE.

योग

उत्तर

i. Given that `(AD)/(DB) = 3/5`

Now, DE is parallel to BC.

Then, by basic proportionality theorem, we have

`(AD)/(DB) = (AE)/(EC)`

`=> (AE)/(EC) = 3/5`

ii. Given that `(AD)/(DB) = 3/5`

So, `(AD)/(AB) = 3/8`

iii. Given that `(AD)/(DB) = 3/5`

So, `(AD)/(AB) = 3/8`

In ΔADE and ΔABC,

∠ADE = ∠ABC  ...(Since DE || BC, so the angles are corresponding angles)

∠A = ∠A   ...(Common angle)

∴ ΔADE ∼ ΔABC  ...(AA criterion for similarity)

`=> (AD)/(AB) = (AE)/(AC)`

`=> (AE)/(AC) = 3/8`

iv. Given that `(AD)/(DB) = 3/5`

So, `(AD)/(AB) = 3/8`

In ΔADE and ΔABC,

∠ADE = ∠ABC  ...(Since DE || BC, so the angles are corresponding angles)

∠A = ∠A    ...(Common angle)

∴ ΔADE ∼ ΔABC  ...(AA criterion for similarity)

`=> (AD)/(AB) = (DE)/(BC)`

`=> 3/8 = (2.4)/(BC)`

`=>` BC = 6.4 cm

v. Given that `(AD)/(DB) = 3/5`

So, `(AD)/(AB) = 3/8`

In ΔADE and ΔABC,

∠ADE = ∠ABC  ...(Since DE || BC, so the angles are corresponding angles)

∠A = ∠A  ...(Common angle)

∴ ΔADE ∼ ΔABC  ...(AA criterion for similarity)

`=> (AD)/(AB) = (DE)/(BC)`

`=> 3/8 = (DE)/(4.8)`

`=>` DE = 1.8 cm

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Similarity (With Applications to Maps and Models) - Exercise 15 (B) [पृष्ठ २१८]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 15 Similarity (With Applications to Maps and Models)
Exercise 15 (B) | Q 1.1 | पृष्ठ २१८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×