Advertisements
Advertisements
प्रश्न
कैसेट बनाने वाली किसी कंपनी के लागत एवं राजस्व फलन क्रमश: C(x) = 26,000 + 30x एवं R(x) = 43x है, जहाँ x एक सप्ताह में निर्मित किए गए एवं बेचे गए कैसेटों की संख्या है। कुछ लाभ अर्जित करने के लिए कंपनी द्वारा कितनी कैसेट अवश्य बेचे जाने चाहिए?
उत्तर
समझें कि, लागत फलन, C(x) = 2600 + 30x और राजस्व फलन R(x) = 43x
इसलिए, लाभ के लिए, P(x), R(x) > C(x)
∴ 43x > 26000 + 30x
⇒ 26000 + 30 < 43x
⇒ 30x − 43x < −26000
⇒ −13x < −26000
आगे सरलीकृत करें,
⇒ 13x > 26000
⇒ x > 2000
इसलिए, कुछ लाभ के लिए निर्मित किए जाने वाले कैसेट की संख्या इससे अधिक होनी चाहिए।
कुछ लाभ के लिए निर्मित कैसेट की संख्या 2000 से अधिक होनी चाहिए।
APPEARS IN
संबंधित प्रश्न
1 ≤ |x – 2| ≤ 3 को हल कीजिए।
किसी उत्पाद के लागत फलन एवं राजस्व फलन क्रमशः C(x) = 20x + 4000 एवं R(x) = 60x + 2000 हैं जहाँ x निर्मित की गईं एवं बेची गईं वस्तुओं की संख्या है। कुछ लाभ अर्जित करने के लिए कितनी वस्तुएँ अवश्य बेची जानी चाहिए?
|x + 1| + |x| > 3 को x के लिए हल कीजिए।
`(|x + 3| + x)/(x + 2) > 1` को x के लिए हल कीजिए।
निम्नलिखित असमिका निकाय को हल कीजिए:
`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`
यदि |x + 3| ≥ 10, तो
यदि x ≥ –3, तो x + 5 ______ 2
यदि `1/(x - 2) < 0`, तो x ______ 2
यदि a < b और c < 0, तो `a/c` ______ `b/c`
यदि |x - 1| ≤ 2, तो -1 ______ x ______ 3
निम्नलिखित असमिका को x के लिए हल कीजिए:
`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`
निम्नलिखित असमिका को x के लिए हल कीजिए:
|x − 1| ≤ 5, |x| ≥ 2
किसी तालाब के पानी की अम्लता सामान्य तब मानी जाती है जब प्रतिदिन के तीन मापों की औसत pH पाठ्यांक 8.2 एवं 8.5 के मध्य रहता है। यदि प्रथम दो pH पाठ्यांक 8.48 एवं 8.35 हैं तो तीसरी पाठ्यांक के pH मान का परिसर (रेंज) ज्ञात कीजिए ताकि तालाब के पानी की अम्लता सामान्य रहे।
9% अम्ल वाले किसी विलयन को हल्का करने के लिए उसमें 3% अम्ल वाला विलयन मिलाया जाता है। इस प्रकार प्राप्त मिश्रण में 5% से अधिक एवं 7% से कम अम्ल होना चाहिए। 9% वाले विलयन की मात्रा यदि 460 लीटर है तो ज्ञात कीजिए कि 3% वाले विलयन की कितनी मात्रा मिलाने की आवश्यकता है?
किसी विलयन को 40°C एवं 45°C तापमान के बीच ही रखना है। फॉरेनहाइट पैमाने पर तापमान का परिसर (रेंज) ज्ञात कीजिए यदि परिवर्तन सूत्र F = `9/5"C" + 32` है।
किसी त्रिभुज की सबसे बड़ी भुजा सबसे छोटी भुजा से दुगनी है एवं तीसरी भुजा सबसे छोटी भुजा से 2 सेमी अधिक है। यदि त्रिभुज का परिमाप 166 सेमी से अधिक है तो सबसे छोटी भुजा की न्यूनतम लंबाई ज्ञात कीजिए।
यदि x < 5, तो
दिया हुआ है कि x, y, b वास्तविक संख्याएँ हैं और x < y, b < 0, तब
यदि |x − 1| > 5, तो
यदि |x + 2| ≤ 9, तो
दिए हुए आलेख को प्रदर्शित करने वाली असमिका निम्नलिखित में से कौन-सी है।
बताइए निम्नलिखित कथन सत्य है या असत्य है?
यदि xy > 0, तो x < 0 और y < 0
बताइए निम्नलिखित कथन सत्य है या असत्य है?
यदि xy < 0, तो x < 0 और y < 0
बताइए निम्नलिखित कथन सत्य है या असत्य है?
यदि x < −5 और x < −2, तो x ∈ (−∞, −5)