Advertisements
Advertisements
प्रश्न
यदि |x - 1| ≤ 2, तो -1 ______ x ______ 3
उत्तर
यदि |x - 1| ≤ 2, तो -1 ≤ x ≤ 3
स्पष्टीकरण:
|x - 1| ≤ 2 ⇒ –2 ≤ x – 1 ≤ 2 ⇒ –1 ≤ x ≤ 3
APPEARS IN
संबंधित प्रश्न
दी गई असमिका का हल ज्ञात कीजिए तथा संख्या रेखा पर आलेखित कीजिए।
3x - 2 < 2x +1
दी गई असमिका का हल ज्ञात कीजिए तथा संख्या रेखा पर आलेखित कीजिए।
5x – 3 ≥ 3x -5
असमिका 3x – 5 < x + 7 को हल कीजिए जहाँ x एक प्राकृतिक संख्या है।
असमिका 3x – 5 < x + 7 को हल कीजिए जहाँ x एक पूर्ण संख्या है।
1 ≤ |x – 2| ≤ 3 को हल कीजिए।
किसी उत्पाद के लागत फलन एवं राजस्व फलन क्रमशः C(x) = 20x + 4000 एवं R(x) = 60x + 2000 हैं जहाँ x निर्मित की गईं एवं बेची गईं वस्तुओं की संख्या है। कुछ लाभ अर्जित करने के लिए कितनी वस्तुएँ अवश्य बेची जानी चाहिए?
`(|x + 3| + x)/(x + 2) > 1` को x के लिए हल कीजिए।
निम्नलिखित असमिका निकाय को हल कीजिए:
`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`
यदि `|x - 2|/(x - 2) ≥ 0`, तो
एक आयत की लंबाई उसकी चौड़ाई का तीन गुना है। यदि आयत का न्यूनतम परिमाप 160 सेमी है, तो
यदि |x + 3| ≥ 10, तो
यदि `1/(x - 2) < 0`, तो x ______ 2
यदि a < b और c < 0, तो `a/c` ______ `b/c`
निम्नलिखित असमिका को x के लिए हल कीजिए:
`(|x - 2| - 1)/(|x - 2| - 2) ≤ 0`
निम्नलिखित असमिका को x के लिए हल कीजिए:
`-5 ≤ (2 - 3x)/4 ≤ 9`
निम्नलिखित असमिका को x के लिए हल कीजिए:
4x + 3 ≥ 2x + 17, 3x – 5 < –2
कैसेट बनाने वाली किसी कंपनी के लागत एवं राजस्व फलन क्रमश: C(x) = 26,000 + 30x एवं R(x) = 43x है, जहाँ x एक सप्ताह में निर्मित किए गए एवं बेचे गए कैसेटों की संख्या है। कुछ लाभ अर्जित करने के लिए कंपनी द्वारा कितनी कैसेट अवश्य बेचे जाने चाहिए?
किसी विलयन को 40°C एवं 45°C तापमान के बीच ही रखना है। फॉरेनहाइट पैमाने पर तापमान का परिसर (रेंज) ज्ञात कीजिए यदि परिवर्तन सूत्र F = `9/5"C" + 32` है।
यदि x < 5, तो
यदि |x + 2| ≤ 9, तो
दिए हुए आलेख को प्रदर्शित करने वाली असमिका निम्नलिखित में से कौन-सी है।
बताइए निम्नलिखित कथन सत्य है या असत्य है?
यदि xy > 0, तो x < 0 और y < 0