हिंदी

Λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म λx + y = λ2 x + λy = 1 दो चरों वाले रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक हल होंगे? - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म 

λx + y = λ2 

x + λy = 1

दो चरों वाले रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक हल होंगे?

योग

उत्तर

रैखिक समीकरणों का दिया गया युग्म है।

λx + y = λ2 और x + λy = 1

a1 = λ, b1 = 1, c1 = – λ2

a2 = 1, b2 = λ, c2 = –1

दिए गए समीकरण हैं।

λx + y – λ2 = 0

x + λy – 1 = 0

उपरोक्त समीकरणों की तुलना ax + by + c = 0 से करें

हमें मिलता है,

a1 = λ, b1 = 1, c1 = – λ2

a2 = 1, b2 = λ, c2 = – 1

`a_1/a_2 = λ/1`

`b_1/b_2 = 1/λ`

`c_1/c_2` = λ2

अनंत अनेक समाधानों के लिए,

`a_1/a_2 = b_1/b_2 = c_1/c_2`

यानी λ = `1/λ` = λ2

तो λ = `1/λ` देता λ = ±1

λ = λ2 देता λ = 1, 0

अतः दोनों समीकरण संतुष्ट हैं।

λ = 1 उत्तर है।

shaalaa.com
रैखिक समीकरण युग्म का ग्राफीय विधि से हल
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: दो चरों वाले रैखिक समीकरणों का युग्म - प्रश्नावली 3.3 [पृष्ठ २६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 3 दो चरों वाले रैखिक समीकरणों का युग्म
प्रश्नावली 3.3 | Q 1.(ii) | पृष्ठ २६

संबंधित प्रश्न

क्रिकेट टीम के एक कोच ने ₹ 3900 में 3 बल्ले तथा 6 गेंदें खरीदीं। बाद में उसने एक और बल्ला तथा उसी प्रकार की 3 गेंदें ₹ 1300 में खरीदीं। इस स्थिति को बीजगणितीय तथा ज्यामितीय रूपों में व्यक्त कीजिए।


2 kg सेब और 1 kg अंगूर का मूल्य किसी दिन ₹ 160 था। एक महीने बाद 4 kg सेब और दो kg अंगूर का मूल्य ₹ 300 हो जाता है। इस स्थिति को बीजगणितीय तथा ज्यामितीय रूपों में व्यक्त कीजिए।


निम्न समस्या में रैखिक समीकरण के युग्म बनाइए और उसके ग्राफीय विधि से हल ज्ञात कीजिए।

कक्षा X के 10 विद्यार्थियों ने एक गणित की पहेली प्रतियोगिता में भाग लिया। यदि लड़कियों की संख्या लड़कों की संख्या से 4 अधिक हो, तो प्रतियोगिता में भाग लिए लड़कों और लड़कियों की संख्या ज्ञात कीजिए।


अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न रैखिक समीकरण के युग्म संगत हैं या असंगत:

3x + 2y = 5; 2x - 3y = 7


समीकरणों x - y + 1 = 0 और 3x + 2y - 12 = 0 का ग्राफ खींचिए। x - अक्ष और इन रेखाओं से बने त्रिभुज के शीर्षों के निर्देशांक ज्ञात कीजिए और त्रिभुजाकार पटल को छायांकित कीजिए।


समीकरणों 5x - y = 5 और 3x - y = 3 के ग्राफ खींचिए। इन रेखाओं और y-अक्ष से बने त्रिभुज के शीर्षों के निर्देशांक ज्ञात कीजिए। इस प्रकार बने त्रिभुज के क्षेत्रफल का परिकलन कीजिए।


क्या रैखिक समीकरणों के निम्नलिखित युग्म संगत हैं? अपने उत्तरों का औचित्य दीजिए।

`3/5x - y = 1/2, 1/5x - 3y = 1/6`

समीकरण λx + 3y = –7, 2x + 6y = 14 के युग्म के अपरिमित रूप से अनेक हल होने के लिए, λ का मान 1 होना चाहिए। क्या यह कथन सत्य है? कारण दीजिए।


आलेखीय विधि से ज्ञात कीजिए कि निम्नलिखित समीकरण युग्म संगत हैं या नहीं। यदि संगत हैं, तो इन्हें हल कीजिए।

3x + y + 4 = 0, 6x – 2y + 4 = 0


आलेखीय विधि से ज्ञात कीजिए कि निम्नलिखित समीकरण युग्म संगत हैं या नहीं। यदि संगत हैं, तो इन्हें हल कीजिए।

x + y = 3, 3x + 3y = 9


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×