हिंदी

निम्न समस्या में रैखिक समीकरण के युग्म बनाइए और उसके ग्राफीय विधि से हल ज्ञात कीजिए। कक्षा X के 10 विद्यार्थियों ने एक गणित की पहेली प्रतियोगिता में भाग लिया। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्न समस्या में रैखिक समीकरण के युग्म बनाइए और उसके ग्राफीय विधि से हल ज्ञात कीजिए।

कक्षा X के 10 विद्यार्थियों ने एक गणित की पहेली प्रतियोगिता में भाग लिया। यदि लड़कियों की संख्या लड़कों की संख्या से 4 अधिक हो, तो प्रतियोगिता में भाग लिए लड़कों और लड़कियों की संख्या ज्ञात कीजिए।

योग

उत्तर १

मान लीजिए लड़कों की संख्या x है और लड़कियों की संख्या y है।

तब बनने वाले समीकरण हैं

x + y = 10   ...(1) और y = x + 4   ...(2)

आइए समीकरणों में से प्रत्येक के लिए दो हल ज्ञात करके समीकरण (1) और (2) के ग्राफ बनाएं।

समीकरणों के हल दिए गए हैं।

x + y = 10 ⇒ y = 10 – x

x 0 8
y 10 2
Points A B

y = x + 4

x 0 1 3
y 4 5 7
Points C D E

इन बिंदुओं को प्लॉट करके हम समीकरणों को दर्शाने के लिए उनसे गुजरने वाली रेखाएँ AB और CE खींचते हैं। दो रेखाएँ AB और Ce बिंदु E (3, 7) पर प्रतिच्छेद करती हैं। इसलिए, x = 3 और y = 7 रैखिक समीकरणों की जोड़ी का अभीष्ट हल है।

यानी लड़कों की संख्या = 3

लड़कियों की संख्या = 7

सत्यापन:

(1) में x = 3 और y = 7 रखने पर, हमें मिलता है

बाएं पक्ष = 3 + 7 = 10 = दाएँ पक्ष, (1) सत्यापित है।

(2) में x = 3 और y = 7 रखने पर, हमें मिलता है

7 = 3 + 4 = 7, (2) सत्यापित है।

इसलिए, दोनों समीकरण संतुष्ट हैं।

shaalaa.com

उत्तर २

माना लड़कियों की संख्या = x

तथा लड़कों की संख्या = y

प्रश्नानुसार,

लड़के और लड़कियाँ की कुल संख्या 10 है।

इसलिए, x + y = 10     ...(1)

लड़कों से लड़कियाँ 4 अधिक हैं।

इसलिए, x - y = 4        ...(2)

समी. (1) के लिए तालिका

x + y = 10

⇒ x = 10 - y

x 5 6 7
y 5 4 3

समी. (2) के लिए तालिका

x - y = 4

⇒ x = 4 + y

x 5 6 7
y 1 2 3

ग्राफीय विधि से हल के लिए हम जब बने ग्राफ को देखते हैं तो पाते हैं कि बिंदु (7, 3) दिए गए समीकरण के लिए प्रतिच्छेदन बिंदु है जो कि रैखिक समीकरण युग्म का उभयनिष्ठ हल है।

इसलिए, लड़कियों कि संख्या = 7 और लड़कों की संख्या = 3 है।

shaalaa.com
रैखिक समीकरण युग्म का ग्राफीय विधि से हल
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: दो चरों वाले रैखिक समीकरण का युग्म - प्रश्नावली 3.2 [पृष्ठ ५५]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
अध्याय 3 दो चरों वाले रैखिक समीकरण का युग्म
प्रश्नावली 3.2 | Q 1. (i) | पृष्ठ ५५

संबंधित प्रश्न

निम्न समस्या में रैखिक समीकरण के युग्म बनाइए और उनके ग्राफीय विधि से हल ज्ञात कीजिए।

5 पेंसिल तथा 7 कलमों का कुल मूल्य ₹ 50 है, जबकि 7 पेंसिल तथा 5 कलमों का कुल मूल्य ₹ 46 है। एक पेंसिल का मूल्य तथा एक कलम मूल्य ज्ञात कीजिए।


निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल ज्ञात कीजिए।

x - y = 8, 3x - 3y = 16


निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल ज्ञात कीजिए।

2x + y - 6 = 0, 4x - 2y - 4 = 0


समीकरणों x - y + 1 = 0 और 3x + 2y - 12 = 0 का ग्राफ खींचिए। x - अक्ष और इन रेखाओं से बने त्रिभुज के शीर्षों के निर्देशांक ज्ञात कीजिए और त्रिभुजाकार पटल को छायांकित कीजिए।


समीकरणों 5x - y = 5 और 3x - y = 3 के ग्राफ खींचिए। इन रेखाओं और y-अक्ष से बने त्रिभुज के शीर्षों के निर्देशांक ज्ञात कीजिए। इस प्रकार बने त्रिभुज के क्षेत्रफल का परिकलन कीजिए।


क्या समीकरणों के निम्नलिखित युग्म का कोई हल नहीं है? अपने उत्तर का औचित्य दीजिए।

x = 2y, y = 2x


क्या निम्नलिखित समीकरण संपाती रेखाओं का एक युग्म निरूपित करती है? अपने उत्तर का औचित्य दीजिए। 

–2x – 3y = 1, 6y + 4x = – 2


k के किस (किन) मान (मानों) के लिए, समीकरण-युग्म

kx + 3y = k – 3

12x + ky = k

का कोई हल नहीं होगा ?


λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म 

λx + y = λ2 

x + λy = 1

दो चरों वाले रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक हल होंगे?


λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म 

λx + y = λ2 

x + λy = 1

दो चरों वाले रैखिक समीकरणों के युग्म का एक अद्वितीय हल होगा?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×