Advertisements
Advertisements
प्रश्न
किसी A.P. के प्रथम और अंतिम पद क्रमशः 17 और 350 हैं। यदि सार्व अंतर 9 है, तो इसमें कितने पद हैं और इनका योग क्या है?
उत्तर
दिया गया है कि,
a = 17
l = 350
d = 9
मान लीजिए कि A.P. में n पद हैं।
l = a + (n − 1) d
350 = 17 + (n − 1)9
9n = 350 + 9 - 17
9n = 359 - 17
9n = 342
⇒ n = `342/9`
⇒ n = 38
Sn = `n/2(a+l)`
Sn = `38/2(17+350)`
= 19 × 367
= 6973
इस प्रकार, इस A.P. में 38 पद हैं और इस A.P. के पदों का योग 6973 है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित A.P. है या नहीं? यदि कोई A.P. है, तो इसका सार्व अंतर ज्ञात कीजिए और इनके तीन और पद लिखिए:
0, -4, -8, -12, ...
निम्नलिखित A.P. है या नहीं? यदि कोई A.P. है, तो इसका सार्व अंतर ज्ञात कीजिए और इनके तीन और पद लिखिए:
1, 3, 9, 27,...
निम्नलिखित A.P. है या नहीं? यदि कोई A.P. है, तो इसका सार्व अंतर ज्ञात कीजिए और इनके तीन और पद लिखिए:
a, 2a, 3a, 4a,...
किसी A.P. का प्रथम पद 5, अंतिम पद 45 और योग 400 है। पदों की संख्या और सार्व अंतर ज्ञात कीजिए।
निम्नलिखित में कौन एक AP बनाते हैं? अपने उत्तर का औचित्य दीजिए।
0, 2, 0, 2,...
औचित्य के साथ बताइए कि क्या यह कहना सत्य है कि `-1, - 3/2, -2, 5/2,...` से एक AP बनती है, क्योंकि a2 – a1 = a3 – a2 है।
निम्नलिखित स्थितियों में से किन में, संबद्ध संख्याओं की सूची से एक AP बनती है? अपने उत्तरों के लिए कारण दीजिए।
वरुण के खाते में प्रत्येक वर्ष के अंत में जमा राशि, जब कि खाते में 1000 रु 10% वार्षिक साधारण ब्याज की दर से जमा किए गए है।
सत्यापित कीजिए कि निम्नलिखित में से प्रत्येक एक AP है और फिर उसके अगले तीन पद लिखिए :
a, 2a + 1, 3a + 2, 4a + 3,...
a, b और c के ऐसे मान ज्ञात कीजिए कि संख्याएँ a, 7, b, 23, c एक AP में हों।
किसी AP में, यदि Sn = n(4n + 1) है, तो AP ज्ञात कीजिए।