हिंदी

किसी परेड में 616 सदस्यों वाली एक सेना (आर्मी) की टुकड़ी को 32 सदस्यों वाले एक आर्मी बैंड के पीछे मार्च करना है। दोनों समूहों को समान संख्या वाले स्तंभों में मार्च करना है। उन स्तंभों की अधिकतम - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

किसी परेड में 616 सदस्यों वाली एक सेना (आर्मी) की टुकड़ी को 32 सदस्यों वाले एक आर्मी बैंड के पीछे मार्च करना है। दोनों समूहों को समान संख्या वाले स्तंभों में मार्च करना है। उन स्तंभों की अधिकतम संख्या क्या है, जिसमें वे मार्च कर सकते हैं?

योग

उत्तर

सेना के टुकडी के सदस्यों की संख्या = 616

आर्मी बैंड के सदस्यों की संख्या = 32

स्तंभों की अधिकतम संख्या = 616 और 32 में करने पर,

616 = 32 × 19 + 8

32 = 8 × 4 + 0

अतः शेषफल = 0, और भाजक = 8। इसलिए 8,616 और 32 का HCF है। अतः स्तंभों की अधिकतम संख्या 8 है |

shaalaa.com
यूक्लिड विभाजन प्रमेयिका
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: वास्तविक संख्याएँ - प्रश्नावली 1.1 [पृष्ठ ८]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
अध्याय 1 वास्तविक संख्याएँ
प्रश्नावली 1.1 | Q 3. | पृष्ठ ८

संबंधित प्रश्न

निम्नलिखित संख्याओं का HCF ज्ञात करने के लिए यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग कीजिए:

867 और 255


यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए 3m या 3m + 1 के रूप का होता है।

[संकेत: यह मान लीजिए x कोई धनात्मक पूर्णांक है। तब, यह 3q, 3q + 1 या 3q + 2 के रूप में लिखा जा सकता है। इनमें से प्रत्येक का वर्ग कीजिए और दर्शाइए कि इन वर्गों को 3m या 3m + 1 के रूप में लिखा जा सकता है।]


यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है।


“दो क्रमागत धनात्मक पूर्णांकों का गुणनफल 2 से विभाज्य है। " क्या यह कथन सत्य है या असत्य? कारण दीजिए।


"तीन क्रमागत धनात्मक पूर्णांकों का गुणनफल 6 से विभाज्य है।" क्या यह कथन सत्य है या असत्य? अपने उत्तर का औचित्य दीजिए।


लिखिए कि क्या किसी धनात्मक पूर्णांक का वर्ग 3m + 2 के रूप का हो सकता है, जहाँ m एक प्राकृत संख्या है। अपने उत्तर का औचित्य दीजिए।


दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए, 6m + 2 या 6m + 5 के रूप का नहीं हो सकता।


दर्शाइए कि किसी पूर्णांक q के लिए, किसी विषम पूर्णांक का वर्ग 4q+1 के रूप का होता है।


यूक्लिड की विभाजन एल्गोरिथ्म का प्रयोग करते हुए, ऐसी सबसे बड़ी संख्या ज्ञात कीजिए, जिससे 1251, 9377 और 15628 को भाग देने पर शेषफल क्रमशः 1, 2 और 3 प्राप्त हो।


दर्शाइए कि n, n + 4, n + 8, n + 12 और n + 16 में से एक और केवल एक ही 5 से विभाज्य है, जहाँ n कोई धनात्मक पूर्णांक है।

[संकेत : किसी भी धनात्मक पूर्णांक को 5q, 5q + 1, 5q + 2, 5q + 3, 5q + 4 के रूप में लिखा जा सकता है।]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×