Advertisements
Advertisements
प्रश्न
दर्शाइए कि n, n + 4, n + 8, n + 12 और n + 16 में से एक और केवल एक ही 5 से विभाज्य है, जहाँ n कोई धनात्मक पूर्णांक है।
[संकेत : किसी भी धनात्मक पूर्णांक को 5q, 5q + 1, 5q + 2, 5q + 3, 5q + 4 के रूप में लिखा जा सकता है।]
उत्तर
n को 5 से विभाजित करने पर, मान लीजिए कि q भागफल है और r शेषफल है।
तब n = 5q + r, जहां 0 ≤ r < 5
`\implies` n = 5q + r, जहां r = 0, 1, 2, 3, 4
`\implies` n = 5q या 5q + 1 या 5q + 2 या 5q + 3 या 5q + 4
केस I: यदि n = 5q,
तब केवल n 5 से विभाज्य है।
केस II: यदि n = 5q + 1,
तब n + 4 = 5q + 1 + 4 = 5q + 5 = 5(q + 1) जो 5 से विभाज्य है।
तो, इस मामले में, केवल (n + 4) 5 से विभाज्य है।
केस III: यदि n = 5q + 2,
तब n + 8 = 5q + 10 = 5(q + 2) जो 5 से विभाज्य है।
तो, इस मामले में, केवल (n + 8) 5 से विभाज्य है।
केस IV: यदि n = 5q + 3,
तब n + 12 = 5q + 3 + 12 = 5q + 15 = 5(q + 3) जो 5 से विभाज्य है।
तो, इस मामले में, केवल (n + 12) 5 से विभाज्य है।
केस V: यदि n = 5q + 4,
तब n + 16 = 5q + 4 + 16 = 5q + 20 = 5(q + 4) जो कि 5 से विभाज्य है।
तो, इस मामले में, केवल (n + 16) 5 से विभाज्य है।
इसलिए n, n + 4, n + 8, n + 12 और n + 16 में से केवल एक ही 5 से विभाज्य है, जहां n कोई धनात्मक पूर्णांक है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित संख्याओं का HCF ज्ञात करने के लिए यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग कीजिए:
196 और 38220
निम्नलिखित संख्याओं का HCF ज्ञात करने के लिए यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग कीजिए:
867 और 255
यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए 3m या 3m + 1 के रूप का होता है।
[संकेत: यह मान लीजिए x कोई धनात्मक पूर्णांक है। तब, यह 3q, 3q + 1 या 3q + 2 के रूप में लिखा जा सकता है। इनमें से प्रत्येक का वर्ग कीजिए और दर्शाइए कि इन वर्गों को 3m या 3m + 1 के रूप में लिखा जा सकता है।]
“दो क्रमागत धनात्मक पूर्णांकों का गुणनफल 2 से विभाज्य है। " क्या यह कथन सत्य है या असत्य? कारण दीजिए।
दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक q के लिए, या तो 4q या 4q + 1 के रूप का होता है।
दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए, 6m + 2 या 6m + 5 के रूप का नहीं हो सकता।
दर्शाइए कि किसी पूर्णांक q के लिए, किसी विषम पूर्णांक का वर्ग 4q+1 के रूप का होता है।
यूक्लिड की विभाजन एल्गोरिथ्म का प्रयोग करते हुए, ऐसी सबसे बड़ी संख्या ज्ञात कीजिए, जिससे 1251, 9377 और 15628 को भाग देने पर शेषफल क्रमशः 1, 2 और 3 प्राप्त हो।
दर्शाइए कि 6q + r के रूप के एक धनात्मक पूर्णांक का घन भी, जहाँ q एक पूर्णांक है तथा r = 0, 1, 2, 3, 4, 5 हैं, 6m + r के रूप का होता है। जहाँ m एक पूर्णांक है।
सिद्ध कीजिए कि n, n + 2 और n + 4 में से एक और केवल एक ही 3 से विभाज्य है, जहाँ n कोई धनात्मक पूर्णांक है।