Advertisements
Advertisements
प्रश्न
“दो क्रमागत धनात्मक पूर्णांकों का गुणनफल 2 से विभाज्य है। " क्या यह कथन सत्य है या असत्य? कारण दीजिए।
विकल्प
सत्य
असत्य
उत्तर
यह कथन सत्य है।
स्पष्टीकरण:
माना कि दो क्रमागत धनात्मक पूर्णांक = a, a + 1
हमारे पास है,
a = bq + r
जहाँ 0 ≤ r < b
b = 2 के लिए, हमारे पास a = 2q + r है।
जहाँ 0 ≤ r < 2 ......(i)
समीकरण (i) में r = 0 प्रतिस्थापित करने पर,
हमें मिलता है,
a = 2q, 2 से विभाज्य है।
a + 1 = 2q + 1, 2 से विभाज्य नहीं है।
समीकरण (i) में r = 1 प्रतिस्थापित करने पर,
हमें मिलता है,
a = 2q + 1, 2 से विभाज्य नहीं है।
a + 1 = 2q + 1 + 1 = 2q + 2, 2 से विभाज्य है।
इस प्रकार, हम यह निष्कर्ष निकाल सकते हैं कि, 0 ≤ r < 2 के लिए
प्रत्येक दो क्रमागत पूर्णांकों में से एक 2 से विभाज्य है।
अतः दो लगातार धनात्मक संख्याओं का गुणनफल भी सम होगा।
अतः कथन "दो क्रमागत धनात्मक पूर्णांकों का गुणनफल 2 से विभाज्य है" सत्य है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित संख्याओं का HCF ज्ञात करने के लिए यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग कीजिए:
867 और 255
किसी परेड में 616 सदस्यों वाली एक सेना (आर्मी) की टुकड़ी को 32 सदस्यों वाले एक आर्मी बैंड के पीछे मार्च करना है। दोनों समूहों को समान संख्या वाले स्तंभों में मार्च करना है। उन स्तंभों की अधिकतम संख्या क्या है, जिसमें वे मार्च कर सकते हैं?
यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए 3m या 3m + 1 के रूप का होता है।
[संकेत: यह मान लीजिए x कोई धनात्मक पूर्णांक है। तब, यह 3q, 3q + 1 या 3q + 2 के रूप में लिखा जा सकता है। इनमें से प्रत्येक का वर्ग कीजिए और दर्शाइए कि इन वर्गों को 3m या 3m + 1 के रूप में लिखा जा सकता है।]
लिखिए कि क्या किसी धनात्मक पूर्णांक का वर्ग 3m + 2 के रूप का हो सकता है, जहाँ m एक प्राकृत संख्या है। अपने उत्तर का औचित्य दीजिए।
यदि n एक विषम पूर्णांक है, तो दर्शाइए कि n2 − 1, 8 से विभाज्य है।
441, 567 और 693 का HCF ज्ञात करने के लिए, यूक्लिड की विभाजन एल्गोरिथ्म का प्रयोग कीजिए।
दर्शाइए कि 6q + r के रूप के एक धनात्मक पूर्णांक का घन भी, जहाँ q एक पूर्णांक है तथा r = 0, 1, 2, 3, 4, 5 हैं, 6m + r के रूप का होता है। जहाँ m एक पूर्णांक है।
सिद्ध कीजिए कि n, n + 2 और n + 4 में से एक और केवल एक ही 3 से विभाज्य है, जहाँ n कोई धनात्मक पूर्णांक है।
सिद्ध कीजिए कि किन्हीं तीन क्रमागत धनात्मक पूर्णांकों में से एक पूर्णांक 3 से अवश्य ही विभाज्य होना चाहिए।
सिद्ध कीजिए कि किसी धनात्मक पूर्णांक n के लिए संख्या n3 − n, 6 से विभाज्य है।