Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि किन्हीं तीन क्रमागत धनात्मक पूर्णांकों में से एक पूर्णांक 3 से अवश्य ही विभाज्य होना चाहिए।
उत्तर
माना तीन क्रमागत धनात्मक पूर्णांक n, n + 1 और n + 2 हैं।
n को 3 से विभाजित करने पर, मान लीजिए कि q भागफल है और r शेषफल है।
फिर, यूक्लिड के विभाजन एल्गोरिथ्म द्वारा,
n = 3q + r, जहां 0 ≤ r < 3
`\implies` n = 3q या n = 3q + 1 या n = 3q + 2
केस I: यदि n = 3q, जो 3 से विभाज्य है।
लेकिन (n + 1) और (n + 2) 3 से विभाज्य नहीं हैं।
तो, इस मामले में, केवल n 3 से विभाज्य है।
केस II: यदि n = 3q + 1,
तब n + 2 = 3q + 3 = 3(q + 1) जो 3 से विभाज्य है।
लेकिन n और (n + 1) 3 से विभाज्य नहीं हैं।
तो, इस मामले में, केवल (n + 2) 3 से विभाज्य है।
केस III: यदि n – 3q + 2,
तब n + 1 = 3q + 3 = 3(q + 1) जो 3 से विभाज्य है।
लेकिन n और (n + 2) 3 से विभाज्य नहीं हैं।
तो, इस मामले में, केवल (n + 1) 3 से विभाज्य है।
इसलिए, किन्हीं तीन लगातार धनात्मक पूर्णांकों में से एक को 3 से विभाज्य होना चाहिए।
APPEARS IN
संबंधित प्रश्न
यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए 3m या 3m + 1 के रूप का होता है।
[संकेत: यह मान लीजिए x कोई धनात्मक पूर्णांक है। तब, यह 3q, 3q + 1 या 3q + 2 के रूप में लिखा जा सकता है। इनमें से प्रत्येक का वर्ग कीजिए और दर्शाइए कि इन वर्गों को 3m या 3m + 1 के रूप में लिखा जा सकता है।]
यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है।
क्या प्रत्येक धनात्मक पूर्णांक 4q + 2 के रूप का हो सकता है, जहाँ q एक पूर्णाक है? अपने उत्तर का औचित्य दीजिए।
“दो क्रमागत धनात्मक पूर्णांकों का गुणनफल 2 से विभाज्य है। " क्या यह कथन सत्य है या असत्य? कारण दीजिए।
एक धनात्मक पूर्णांक 3q + 1 के रूप का है, जहाँ q एक प्राकृत संख्या है। क्या इसके वर्ग को 3m + 1 से भिन्न रूप में, अर्थात् 3m या 3m + 2 के रूप में लिख सकते हैं, जहाँ m कोई पूर्णांक है? अपने उत्तर का औचित्य दीजिए।
दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए, 6m + 2 या 6m + 5 के रूप का नहीं हो सकता।
यदि n एक विषम पूर्णांक है, तो दर्शाइए कि n2 − 1, 8 से विभाज्य है।
सिद्ध कीजिए कि n, n + 2 और n + 4 में से एक और केवल एक ही 3 से विभाज्य है, जहाँ n कोई धनात्मक पूर्णांक है।
सिद्ध कीजिए कि किसी धनात्मक पूर्णांक n के लिए संख्या n3 − n, 6 से विभाज्य है।
दर्शाइए कि n, n + 4, n + 8, n + 12 और n + 16 में से एक और केवल एक ही 5 से विभाज्य है, जहाँ n कोई धनात्मक पूर्णांक है।
[संकेत : किसी भी धनात्मक पूर्णांक को 5q, 5q + 1, 5q + 2, 5q + 3, 5q + 4 के रूप में लिखा जा सकता है।]