हिंदी

दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए, 6m + 2 या 6m + 5 के रूप का नहीं हो सकता। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए, 6m + 2 या 6m + 5 के रूप का नहीं हो सकता।

योग

उत्तर

मान लीजिए a एक मनमाना धनात्मक पूर्णांक है।

फिर, यूक्लिड के विभाजन एल्गोरिथ्म द्वारा, सकारात्मक पूर्णांक a और 6 के अनुरूप, गैर-नकारात्मक पूर्णांक q और r मौजूद हैं जैसे कि

a = 6q + r, जहां 0 ≤ r < 6

`\implies` a2 = (6q + r)2 = 36 q2 + r2 + 12qr .......[∵ (a + b)2 = a2 + 2ab + b2]

`\implies` a2 = 6(6q2 + 2qr) + r2 … (i)

जहाँ, 0 ≤ r < 6

केस I: जब r = 0,

फिर समीकरण (i) में r = 0 रखने पर, हमें मिलता है।

a2 = 6(6q2)

= 6m

जहाँ, m = 6q2 एक पूर्णांक है।

केस II: जब r = 1,

फिर समीकरण (i) में r = 1 रखने पर, हमें मिलता है।

a2 = 6(6q2 + 2q) + 1

= 6m + 1

जहाँ, m = (6q2 + 2q) एक पूर्णांक है।

केस III: जब r = 2,

फिर समीकरण (i) में r = 2 रखने पर, हमें मिलता है।

a2 = 6(6q2 + 4q) + 4

= 6m + 4

जहाँ, m = (6q2 + 4q) एक पूर्णांक है।

केस IV: जब r = 3,

फिर समीकरण (i) में r = 3 रखने पर, हमें मिलता है।

a2 = 6(6q2 + 6q) + 9

= 6(6q2 + 6q) + 6 + 3

`\implies` a2 = 6(6q2 + 6q + 1) + 3

= 6m + 3

जहाँ, m = (6q2 + 6q + 1) एक पूर्णांक है।

केस V: जब r = 4,

फिर समीकरण (i) में r = 4 रखने पर, हमें मिलता है।

a2 = 6(6q2 + 8q) + 16

= 6(6q2 + 8q) + 12 + 4

`\implies` a2 = 6(6q2 + 8q + 2) + 4

= 6m + 4

जहाँ, m = (6q2 + 8q + 2) एक पूर्णांक है।

केस VI: जब r = 5,

फिर समीकरण (i) में r = 5 रखने पर, हमें मिलता है।

a2 = 6(6q2 + 10q) + 25

= 6(6q2 + 10q) + 24 + 1

`\implies` a2 = 6(6q2 + 10q + 4) + 1

= 6m + 1
जहाँ, m = (6q2 + 10q + 4) एक पूर्णांक है।

इसलिए, किसी भी धनात्मक पूर्णांक का वर्ग किसी भी पूर्णांक m के लिए 6m + 2 या 6m + 5 के रूप का नहीं हो सकता।

shaalaa.com
यूक्लिड विभाजन प्रमेयिका
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: वास्तविक संख्याएँ - प्रश्नावली 1.3 [पृष्ठ ६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 1 वास्तविक संख्याएँ
प्रश्नावली 1.3 | Q 4. | पृष्ठ ६

संबंधित प्रश्न

निम्नलिखित संख्याओं का HCF ज्ञात करने के लिए यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग कीजिए:

196 और 38220


दर्शाइए कि कोई भी धनात्मक विषम पूर्णांक 6q + 1 या 6q + 3 या 6q + 5 के रूप का होता है, जहाँ q कोई पूर्णांक है।


लिखिए कि क्या किसी धनात्मक पूर्णांक का वर्ग 3m + 2 के रूप का हो सकता है, जहाँ m एक प्राकृत संख्या है। अपने उत्तर का औचित्य दीजिए।


एक धनात्मक पूर्णांक 3q + 1 के रूप का है, जहाँ q एक प्राकृत संख्या है। क्या इसके वर्ग को 3m + 1 से भिन्न रूप में, अर्थात् 3m या 3m + 2 के रूप में लिख सकते हैं, जहाँ m कोई पूर्णांक है? अपने उत्तर का औचित्य दीजिए।


दोनों ही संख्याएँ 525 और 3000 केवल 3, 5, 15, 25 और 75 से विभाज्य हैं। HCF (525, 3000) क्या है? अपने उत्तर का औचित्य दीजिए।


दर्शाइए कि किसी धनात्मक पूर्णांक का घन, किसी पूर्णांक m के लिए, 4m, 4m + 1 या 4m + 3 के रूप का होता है।


यदि n एक विषम पूर्णांक है, तो दर्शाइए कि n2 − 1, 8 से विभाज्य है।


सिद्ध कीजिए कि यदि x और y दोनों धनात्मक विषम पूर्णांक हैं, तो x2 + y2 एक सम संख्या है परंतु 4 से विभाज्य नहीं है।


441, 567 और 693 का HCF ज्ञात करने के लिए, यूक्लिड की विभाजन एल्गोरिथ्म का प्रयोग कीजिए।


सिद्ध कीजिए कि किसी धनात्मक पूर्णांक n के लिए संख्या n3 − n, 6 से विभाज्य है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×