हिंदी

दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक q के लिए, या तो 4q या 4q + 1 के रूप का होता है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक q के लिए, या तो 4q या 4q + 1 के रूप का होता है।

योग

उत्तर

मान लीजिए a एक मनमाना धनात्मक पूर्णांक है।

फिर यूक्लिड के विभाजन एल्गोरिथ्म के अनुसार, सकारात्मक पूर्णांक a और 4 के अनुरूप, गैर-नकारात्मक पूर्णांक m और r मौजूद हैं, जैसे कि

a = 4m + r, जहां 0 ≤ r < 4

`\implies` a2 = 16m2 + r2 + 8mr

जहाँ, 0 ≤ r < 4 ......(i) [∵ (a + b)2 = a2 + 2ab + b2]

केस I: जब r = 0,

तो समीकरण (i) में r = 0 डालने पर, हमें मिलता है

a2 = 16m2

= 4(4m2)

= 4q

जहाँ, q = 4m2 एक पूर्णांक है।

केस II: जब r = 1,

तो समीकरण (i) में r = 1 रखने पर, हमें मिलता है

a2 = 16m2 + 1 + 8m

= 4(4m2 + 2 इंच) + 1

= 4q + 1

जहाँ, q = (4m2 + 2m) एक पूर्णांक है।

केस III: जब r = 2,

तो समीकरण (i) में r = 2 रखने पर, हमें मिलता है

a2 = 16m2 + 4 + 16m

= 4(4m2 + 4m + 1)

= 4q

जहाँ, q = (4m2 + 4m + 1) एक पूर्णांक है।

केस IV: जब r = 3,

तो समीकरण (i) में r = 3 रखने पर, हमें मिलता है

a2 = 16m2 + 9 + 24m

= 16m2 + 24m + 8 + 1

= 4(4m2 + 6m + 2) + 1

= 4q + 1

जहाँ, q = (4m2 + 6m + 2) एक पूर्णांक है।

इसलिए, किसी भी धनात्मक पूर्णांक का वर्ग किसी पूर्णांक q के लिए 4q या 4q + 1 के रूप का होता है।

shaalaa.com
यूक्लिड विभाजन प्रमेयिका
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: वास्तविक संख्याएँ - प्रश्नावली 1.3 [पृष्ठ ६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 1 वास्तविक संख्याएँ
प्रश्नावली 1.3 | Q 1. | पृष्ठ ६

संबंधित प्रश्न

निम्नलिखित संख्याओं का HCF ज्ञात करने के लिए यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग कीजिए:

196 और 38220


दर्शाइए कि कोई भी धनात्मक विषम पूर्णांक 6q + 1 या 6q + 3 या 6q + 5 के रूप का होता है, जहाँ q कोई पूर्णांक है।


किसी परेड में 616 सदस्यों वाली एक सेना (आर्मी) की टुकड़ी को 32 सदस्यों वाले एक आर्मी बैंड के पीछे मार्च करना है। दोनों समूहों को समान संख्या वाले स्तंभों में मार्च करना है। उन स्तंभों की अधिकतम संख्या क्या है, जिसमें वे मार्च कर सकते हैं?


क्या प्रत्येक धनात्मक पूर्णांक 4q + 2 के रूप का हो सकता है, जहाँ q एक पूर्णाक है? अपने उत्तर का औचित्य दीजिए।


“दो क्रमागत धनात्मक पूर्णांकों का गुणनफल 2 से विभाज्य है। " क्या यह कथन सत्य है या असत्य? कारण दीजिए।


लिखिए कि क्या किसी धनात्मक पूर्णांक का वर्ग 3m + 2 के रूप का हो सकता है, जहाँ m एक प्राकृत संख्या है। अपने उत्तर का औचित्य दीजिए।


दोनों ही संख्याएँ 525 और 3000 केवल 3, 5, 15, 25 और 75 से विभाज्य हैं। HCF (525, 3000) क्या है? अपने उत्तर का औचित्य दीजिए।


441, 567 और 693 का HCF ज्ञात करने के लिए, यूक्लिड की विभाजन एल्गोरिथ्म का प्रयोग कीजिए।


यूक्लिड की विभाजन एल्गोरिथ्म का प्रयोग करते हुए, ऐसी सबसे बड़ी संख्या ज्ञात कीजिए, जिससे 1251, 9377 और 15628 को भाग देने पर शेषफल क्रमशः 1, 2 और 3 प्राप्त हो।


सिद्ध कीजिए कि n, n + 2 और n + 4 में से एक और केवल एक ही 3 से विभाज्य है, जहाँ n कोई धनात्मक पूर्णांक है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×