Advertisements
Advertisements
प्रश्न
किसी स्कूल के विद्यार्थी ड्रिल अभ्यास के लिए, अपने खेल के मैदान में पंक्तियों और स्तंभों में खड़े हैं। A, B, C और D किन्ही चार विद्यार्थियों के स्थान हैं, जैसा आकृति में दर्शाया गया है। क्या यह संभव है कि इस ड्रिल में जसपाल को ऐसे स्थान पर खड़ा कर दिया जाए कि वह A, B, C और D से समदूरस्थ हो? यदि ऐसा है तो उसकी स्थिति कहाँ होगी?
उत्तर
हाँ, आकृति से हम देखते हैं कि चार छात्रों A, B, C और D की स्थिति क्रमशः (3, 5), (7, 9), (11, 5) और (7,1) है, अर्थात ये के ऊपर चार चतुर्भुज हैं।
अब, हम इस चतुर्भुज का प्रकार ज्ञात करेंगे।
इसके लिए हम इसके सभी पक्ष तलाशेंगे।
हम देखते हैं कि, AB = BC = CD = DA अर्थात सभी भुजाएँ बराबर हैं।
अब, AB = `sqrt((7 - 3)^2 + (9 - 5)^2` ...`["दूरी सूत्र द्वारा", d = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)]`
AB = `sqrt((4)^2 + (4)^2`
= `sqrt(16 + 16)`
AB = `4sqrt(2)`
BC = `sqrt((11 - 7)^2 + (5 - 9)^2`
= `sqrt((4)^2 + (-4)^2`'
= `sqrt(16 + 16)`
= `4sqrt(2)`
CD = `sqrt((7 - 11)^2 + (1 - 5)^2`
= `sqrt((-4)^2 + (-4)^2`
= `sqrt(16 + 16)`
= `4sqrt(2)`
और DA = `sqrt((3 - 7)^2 + (5 - 1)^2`
= `sqrt((-4)^2 + (4)^2`
= `sqrt(16 + 16)`
= `4sqrt(2)`
हम देखते हैं कि, AB = BC = CD = DA यानी, सभी पक्ष बराबर हैं।
अब, हम दोनों विकर्णों की लंबाई ज्ञात करते हैं।
AC = `sqrt((11 - 3)^2 + (5 - 5)^2`
= `sqrt((8)^2 + 0)`
= 8
और BD = `sqrt((7 - 7)^2 + (1 - 9)^2`
= `sqrt(0 + (-8)^2`
= 8
यहाँ, AC = BD
चूँकि, AB = BC = CD = DA और AC = BD
जो एक वर्ग को दर्शाता है।
यह भी जाना जाता है कि एक वर्ग के विकर्ण एक दूसरे को समद्विभाजित करते हैं।
तो, P जसपाल की स्थिति है जिसमें वह चार छात्रों A, B, C और D में से प्रत्येक से समान दूरी पर है।
∴ बिंदु P के निर्देशांक = AC का मध्य-बिंदु
= `((3 + 11)/2, (5 + 5)/2)` ...`[∵ "चूंकि, बिंदुओं वाले रेखाखंड का मध्य-बिंदु" (x_1, y_1) "and" (x_2, y_2) = ((x_1 + y_1)/2, (x_2 + y_2)/2)]`
= `(14/2, 10/2)`
= `(7, 5)`
इसलिए, जसपल की आवश्यक स्थिति (7, 5) है।
APPEARS IN
संबंधित प्रश्न
(सड़क योजना): एक नगर में दो मुख्य सड़कें हैं, जो नगर के केन्द्र पर मिलती हैं। ये दो सड़कें उत्तर-दक्षिण की दिशा और पूर्व-पश्चिम की दिशा में हैं। नगर की अन्य सभी सड़कें इन मुख्य सड़कों के समांतर परस्पर 200 मीटर की दूरी पर हैं। प्रत्येक दिशा में लगभग पाँच सड़कें हैं। 1 सेंटीमीटर = 200 मीटर का पैमाना लेकर अपनी नोट बुक में नगर का एक मॉडल बनाइए। सड़कों को एकल रेखाओं से निरूपित कीजिए।
आपके मॉडल में एक-दूसरे को काटती हुई अनेक क्रॉस-स्ट्रीट (चौराहे) हो सकती हैं। एक विशेष क्रॉस-स्ट्रीट दो सड़कों से बनी है, जिनमें से एक उत्तर-दक्षिण दिशा में जाती है और दूसरी पूर्व-पश्चिम की दिशा में। प्रत्येक क्रॉस-स्ट्रीट का निर्देशन इस प्रकार किया जाता है: यदि दूसरी सड़क उत्तर-दक्षिण दिशा में जाती है और पाँचवीं सड़क पूर्व-पश्चिम दिशा में जाती है और ये एक क्रॉसिंग पर मिलती हैं, तब इसे हम क्रॉस-स्ट्रीट (2, 5) कहेंगे। इसी परंपरा से यह ज्ञात कीजिए कि
- कितनी क्रॉस-स्ट्रीटों को (4, 3) माना जा सकता है।
- कितनी क्रॉस-स्ट्रीटों को (3, 4) माना जा सकता है।
बिंदु P(2, 3) की x-अक्ष से दूरी ______ है।
यदि P(9a, – 2, – b), बिंदुओं A(3a + 1, –3) और B(8a, 5) को मिलाने वाले रेखाखंड को 3 : 1 के अनुपात में विभाजित करे, तो a और b के मान ज्ञात कीजिए।
बिंदु (1, – 1), (2, – 2), (4, – 5), (– 3, – 4) ______ ।
यदि P(5, 1), Q(8, 0), R(0, 4), S(0, 5) और O(0, 0) को एक आलेख कागज पर आलेखित किया जाए, तो x-अक्ष पर स्थित बिंदु हैं :
वह बिंदु जो y-अक्ष की ऋणात्मक दिशा में y-अक्ष पर 5 मात्रक की दूरी पर स्थित है, होगा :
बिंदु (3, 0) प्रथम चतुर्थांश में स्थित है।
उस बिंदु के निर्देशांक ज्ञात कीजिए, जो जिसका भुज 5 है और जो x-अक्ष पर स्थित है।
X अक्ष पर स्थित बिंदु निम्नलिखित में से किस स्वरूप में होता है?
(-5, 5), (6, 5), (-3, 5), (0, 5) बिंदुओं को समाविष्ट करने वाली रेखा का स्वरूप कैसा होगा ?