हिंदी

क्या किसी घटना की प्रायोगिक प्रायिकता 1 से अधिक हो सकती है? अपने उत्तर का औचित्य दीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

क्या किसी घटना की प्रायोगिक प्रायिकता 1 से अधिक हो सकती है? अपने उत्तर का औचित्य दीजिए। 

एक पंक्ति में उत्तर

उत्तर

नहीं, चूंकि परीक्षणों की संख्या जिनमें घटना घटित हो सकती है, परीक्षणों की कुल संख्या से अधिक नहीं हो सकती।

shaalaa.com
भूमिका: प्रायिकता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: सांख्यिकी और प्रायिकता - प्रश्नावली 14.2 [पृष्ठ १४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
अध्याय 14 सांख्यिकी और प्रायिकता
प्रश्नावली 14.2 | Q 9. | पृष्ठ १४१

संबंधित प्रश्न

मैं तीन सिक्कों को एक साथ उछालता हूँ। संभव परिणाम कोई चित नहीं, 1 चित, 2 चित या 3 चित है। अतः, मैं कहता हूँ की कोई चित प्राप्त न करने की प्रायिकता `1/4` है। इस निष्कर्ष में क्या गलती है?


पेटी A में 25 पर्चियाँ हैं, जिनमें से 19 पर 1 रु अंकित है और शेष पर 5 रु अंकित है। पेटी B में 50 पर्चियाँ हैं, जिनमें से 45 पर 1 रु अंकित है और शेष पर 13 रु अंकित है। दोनों पेटियों की पर्चियों को एक स्थान पर एकत्रित करके एक तीसरी पेटी में रख दिया जाता है और इन्हें अच्छी प्रकार से मिला दिया जाता हैं। इस पेटी में से यादृच्छिक रूप से एक पर्ची निकली जाती है। इसकी क्या प्रायिकता है की इस पर्ची पर 1 रु के अतिरिक्त कुछ और अंकित होगा ?


बच्चों के एक खेल में, 8 त्रिभुज हैं, जिसमें से 3 नीले और शेष लाल हैं। साथ ही, इस खेल में 10 वर्ग हैं जिसमें से 6 नीले हैं और शेष लाल हैं। इनमें से एक टुकड़ा यादृच्छिक रूप से खो जाता है। इस टुकड़े के निम्नलिखित होने की प्रायिकता ज्ञात कीजिए -

नीले रंग का वर्ग


फुटबाल के एक खिलाड़ी द्वारा 10 मैचों में किए गए गोलों की संख्या निम्नलिखित है :

1, 3, 2, 5, 8, 6, 1, 4, 7, 9

क्योंकि मैचों की संख्या 10 (एक सम संख्या) है, इसलिए

`"माध्यक" = (5^ "वाँ" "प्रेक्षण" +6^"वाँ" "प्रेक्षण")/2 = (8+ 6)/2 = 7`

क्या यह सही उत्तर है और क्यों?


क्या यह कहना सही है कि आयतचित्र में प्रत्येक आयत का क्षेत्रफल संगत वर्ग अंतराल की माप के समानुपाती होता है? यदि नहीं, तो कथन को सही रूप में लिखिए।


एक सतत बंटन के वर्ग चिह्न निम्नलिखित हैं :

1.04, 1.14, 1.24, 1.34, 1.44, 1.54 और 1.64

क्या यह कहना सही है कि अंतिम अंतराल 1.55 – 1.73 होगा ? अपने उत्तर का कारण दीजिए।


एक कंपनी ने 4000 परिवारों को यादृच्छिक रूप से चुना तथा उनके आय स्तर और घर में स्थित टी.वी. सेटों की संख्या में संबंध ज्ञात करने हेतु एक सर्वेक्षण किया। इस प्रकार प्राप्त सूचनाओं को निम्नलिखित सारणी के रूप में सूचीबद्ध किया गया है :  

मासिक आय (रू में) टी.वी. सेटों/परिवारों की संख्या
0 1 2 2 से अधिक
< 10000 20 80 10 0
10000 – 14999 10 240 60 0
15000 – 19999 0 380 120 30
20000 – 24999 0 520 370 80
25000 और उससे अधिक 0 1100 760 220

निम्नलिखित की प्रायिकता ज्ञात कीजिए - 

एक परिवार में एक भी टी.वी. सेट नहीं होना।


पैक किए गए प्रत्येक डिब्बे में बल्बों की संख्या 40 है। इनमें से 700 डिब्बों के खराब बल्बों की संख्या ज्ञात करने के लिए जाँच की गई तथा इसके परिणाम निम्नलिखित सारणी में दिए गए हैं :

खराब बल्बों की संख्या 0 1 2 3 4 5 6 6 से अधिक
बारंबारता 400 180 48 41 18 8 3 2

इन डिब्बों में से एक डिब्बा यादृच्छिक रूप से चुना जाता है। इसकी क्या प्रायिकता है कि इस डिब्बे में

  1. कोई बल्ब खराब नहीं होगा? 
  2. खराब बल्बों की संख्या 2 से 6 तक होगी?
  3. 4 से कम खराब बल्ब होंगे?

पिछले 200 कार्य दिवसों में, किसी मशीन द्वारा निर्मित खराब पुर्जों की संख्या निम्नलिखित सारणी में दी गई है : 

खराब पुर्जों की संख्या 0 1 2 3 4 5 6 7 8 9 10 11 12 13
दिन 50 32 22 18 12 12 10 10 10 8 6 6 2 2

इसकी प्रायिकता निर्धारित कीजिए कि कल के उत्पादन में

  1. कोई खराब पुर्जा नहीं होगा।
  2. न्यूनतम एक खराब पुर्जा होगा।
  3. 5 से अधिक खराब पुर्जे नहीं होंगे।
  4. 13 से अधिक खराब पुर्जे होंगे।

पिछले 200 कार्य दिवसों में, किसी मशीन द्वारा निर्मित खराब पुर्जों की संख्या निम्नलिखित सारणी में दी गई है : 

खराब पुर्जों की संख्या 0 1 2 3 4 5 6 7 8 9 10 11 12 13
दिन 50 32 22 18 12 12 10 10 10 8 6 6 2 2

इसकी प्रायिकता निर्धारित कीजिए कि कल के उत्पादन में न्यूनतम एक खराब पुर्जा होगा।  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×