हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

Light of wavelength 488 nm is produced by an argon laser which is used in the photoelectric effect. When light from this spectral line is incident on the emitter, - Physics

Advertisements
Advertisements

प्रश्न

Light of wavelength 488 nm is produced by an argon laser which is used in the photoelectric effect. When light from this spectral line is incident on the emitter, the stopping (cut-off) potential of photoelectrons is 0.38 V. Find the work function of the material from which the emitter is made.

संख्यात्मक

उत्तर

Wavelength of light produced by the argon laser, λ = 488 nm = 488 × 10−9 m

Stopping potential of the photoelectrons, V0 = 0.38 V

1eV = 1.6 × 10−19 J

∴ V0 = `0.38/(1.6 xx 10^(-19)) "eV"`

Planck’s constant, h = 6.6 × 10−34 Js

Charge on an electron, e = 1.6 × 10−19 C

Speed of light, c = 3 × 10 m/s

From Einstein’s photoelectric effect, we have the relation involving the work function Φ0 of the material of the emitter as:

`"eV"_0 = ("hc")/lambda - phi_0`

`phi_0 - ("hc")/lambda - "eV"_0`

= `(6.6 xx 10^(-34 ) xx 3 xx 10^8)/(1.6 xx 10^(-19) xx  488 xx 10^(-9)) - (1.6 xx 10^(-19) xx 0.38)/(1.6 xx 10^(-19))`

= 2.54 − 0.38

= 2.16 eV

Therefore, the material with which the emitter is made has the work function of 2.16 eV.

shaalaa.com
Einstein’s Photoelectric Equation: Energy Quantum of Radiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Dual Nature of Radiation and Matter - Exercise [पृष्ठ ४०८]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
अध्याय 11 Dual Nature of Radiation and Matter
Exercise | Q 11.11 | पृष्ठ ४०८
एनसीईआरटी Physics [English] Class 12
अध्याय 11 Dual Nature of Radiation and Matter
Exercise | Q 11 | पृष्ठ ४०८

संबंधित प्रश्न

The work function for a certain metal is 4.2 eV. Will this metal give photoelectric emission for incident radiation of wavelength 330 nm?


Plot a graph showing the variation of photoelectric current with collector plate potential at a given frequency but for two different intensities I1 and I2, where I2 > I1.


point out any two characteristic properties of photons on which Einstein’s photoelectric equation is based ?


Briefly explain the three observed features which can be explained by Einstein’s photoelectric equation.


Is p − E/c valid for electrons?


The electric field at a point associated with a light wave is `E = (100  "Vm"^-1) sin [(3.0 xx 10^15 "s"^-1)t] sin [(6.0 xx 10^15 "s"^-1)t]`.If this light falls on a metal surface with a work function of 2.0 eV, what will be the maximum kinetic energy of the photoelectrons?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A monochromatic light source of intensity 5 mW emits 8 × 1015 photons per second. This light ejects photoelectrons from a metal surface. The stopping potential for this setup is 2.0 V. Calculate the work function of the metal.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A small metal plate (work function φ) is kept at a distance d from a singly-ionised, fixed ion. A monochromatic light beam is incident on the metal plate and photoelectrons are emitted. Find the maximum wavelength of the light beam, so that some of the photoelectrons may go round the ion along a circle.


In a photoelectric experiment, the collector plate is at 2.0 V with respect to the emitter plate made of copper (φ = 4.5 eV). The emitter is illuminated by a source of monochromatic light of wavelength 200 nm. Find the minimum and maximum kinetic energy of the photoelectrons reaching the collector.


Use Einstein's photoelectric equation to show how from this graph,
(i) Threshold frequency, and
(ii) Planck's constant can be determined.


Choose the correct answer from given options
Photons of frequency v are incident on the surface of two metals A and B of threshold frequency 3/4 v and 2/3 v, respectively. The ratio of maximum kinetic energy of electrons emitted from A to that from B is


Each photon has the same speed but different ______.


  1. In the explanation of photo electric effect, we assume one photon of frequency ν collides with an electron and transfers its energy. This leads to the equation for the maximum energy Emax of the emitted electron as Emax = hν – φ where φ0 is the work function of the metal. If an electron absorbs 2 photons (each of frequency ν) what will be the maximum energy for the emitted electron?
  2. Why is this fact (two photon absorption) not taken into consideration in our discussion of the stopping potential?

There are materials which absorb photons of shorter wavelength and emit photons of longer wavelength. Can there be stable substances which absorb photons of larger wavelength and emit light of shorter wavelength.


Radiation of frequency 1015 Hz is incident on three photosensitive surfaces A, B and C. Following observations are recorded:

Surface A: no photoemission occurs

Surface B: photoemission occurs but the photoelectrons have zero kinetic energy.

Surface C: photo emission occurs and photoelectrons have some kinetic energy.
Using Einstein’s photo-electric equation, explain the three observations.


The photon emitted during the de-excitation from the first excited level to the ground state of a hydrogen atom is used to irradiate a photocathode in which the stopping potential is 5 V. Calculate the work function of the cathode used.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×