हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Monochromatic Light Source of Intensity 5 Mw Emits 8 × 1015 Photons per Second. this Light Ejects Photoelectrons from a Metal Surface. the Stopping Potential for this Setup is 2.0 V. - Physics

Advertisements
Advertisements

प्रश्न

A monochromatic light source of intensity 5 mW emits 8 × 1015 photons per second. This light ejects photoelectrons from a metal surface. The stopping potential for this setup is 2.0 V. Calculate the work function of the metal.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)

एक शब्द/वाक्यांश उत्तर
योग

उत्तर

Given:-

Intensity of light, I = 5 mW

Number of photons emitted per second, n = 8 × 1015

Stopping potential, V0 = 2 V

Energy, `E = hv = I/n = (5 xx 10^-3)/(8 xx 10^15)`

From Einstein's photoelectric equation, work function,

`W_0 = hv - eV_0`

Here, h = Planck's constant

`e = 1.6 xx 10^-19 C`

On substituting the respective values, we get :-

`W_0 = (5 xx 10^-3)/(8 xx 10^15) - 1.6 xx 10^-19 xx 2`

`= 6.25 xx 10^-19 - 3.2 xx 10^-19`

`= 3.05 xx 10^-19`

`= (3.05 xx 10^-19)/(1.6 xx 10^-15) = 1.906  "eV"`

shaalaa.com
Einstein’s Photoelectric Equation: Energy Quantum of Radiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Photoelectric Effect and Wave-Particle Duality - Exercises [पृष्ठ ३६६]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 20 Photoelectric Effect and Wave-Particle Duality
Exercises | Q 23 | पृष्ठ ३६६

संबंधित प्रश्न

In an experiment on the photoelectric effect, the slope of the cut-off voltage versus the frequency of incident light is found to be 4.12 × 10−15 Vs. Calculate the value of Planck’s constant.


The work function for a certain metal is 4.2 eV. Will this metal give photoelectric emission for incident radiation of wavelength 330 nm?


Plot a graph showing the variation of photoelectric current with collector plate potential at a given frequency but for two different intensities I1 and I2, where I2 > I1.


Write Einstein’s photoelectric equation?


A non-monochromatic light is used in an experiment on photoelectric effect. The stopping potential


The electric field at a point associated with a light wave is `E = (100  "Vm"^-1) sin [(3.0 xx 10^15 "s"^-1)t] sin [(6.0 xx 10^15 "s"^-1)t]`.If this light falls on a metal surface with a work function of 2.0 eV, what will be the maximum kinetic energy of the photoelectrons?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


A small metal plate (work function φ) is kept at a distance d from a singly-ionised, fixed ion. A monochromatic light beam is incident on the metal plate and photoelectrons are emitted. Find the maximum wavelength of the light beam, so that some of the photoelectrons may go round the ion along a circle.


Consider the situation of the previous problem. Consider the faster electron emitted parallel to the large metal plate. Find the displacement of this electron parallel to its initial velocity before it strikes the large metal plate.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


How does one explain the emission of electrons from a photosensitive surface with the help of Einstein’s photoelectric equation? 


Use Einstein's photoelectric equation to show how from this graph,
(i) Threshold frequency, and
(ii) Planck's constant can be determined.


Choose the correct answer from given options
Photons of frequency v are incident on the surface of two metals A and B of threshold frequency 3/4 v and 2/3 v, respectively. The ratio of maximum kinetic energy of electrons emitted from A to that from B is


According to Einstein's photoelectric equation, the plot of the kinetic energy of the emitted photoelectrons from a metal versus the frequency of the incident radiation gives a straight line, whose slope ______.


Each photon has the same speed but different ______.


The minimum energy required to remove an electron is called ______.


There are materials which absorb photons of shorter wavelength and emit photons of longer wavelength. Can there be stable substances which absorb photons of larger wavelength and emit light of shorter wavelength.


The photon emitted during the de-excitation from the first excited level to the ground state of a hydrogen atom is used to irradiate a photocathode in which the stopping potential is 5 V. Calculate the work function of the cathode used.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×