हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Consider the Situation of the Previous Problem. Consider the Faster Electron Emitted Parallel to the Large Metal Plate. Find the Displacement of this Electron Parallel - Physics

Advertisements
Advertisements

प्रश्न

Consider the situation of the previous problem. Consider the faster electron emitted parallel to the large metal plate. Find the displacement of this electron parallel to its initial velocity before it strikes the large metal plate.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)

योग

उत्तर

Electric field of the metal plate,

`E = σ/∈_0 = (1 xx 10^-9)/(8.85 xx 10^-12)`

= 113 V/m

Acceleration,

`a = (qE)/m`,

where q=charge on electron           

          E=electric field           

          m=mass of electron

`a = (1.6 xx 10^-19 xx 113)/(9.1 xx 10^-31) = 19.87 xx 10^12`

`t = sqrt((2y)/a) = sqrt((2 xx 20 xx 10^-2)/(19.87 xx 10^12)`

=`1.41 xx 10^-7` s

From Einstein's photoelectric equation,

`K.E. = (hc)/lambda - W = 1.2  "eV"`

= `1.2 xx 1.6 xx 10^-19  "J"...........[because "in problem " 31 : "KE" = 1.2  "eV"`]

`therefore "Velocity", v = sqrt({2KE)/m)`

`= sqrt((2 xx 1.2 xx 1.6 xx 10^-19)/(4.1 xx 10^-31))` `sqrt((2 xx 1.2 xx 1.6 xx 10^-19)/(4.1 xx 10^-31))`

`= 0.665 xx 10^-6  "m/s"`

∴ Horizontal displacement,

`S = v xx t`

`S = 0.665 xx 10^-6 xx 1.4 xx 10^-7`

`S = 0.092  "m" = 9.2  "cm"`

shaalaa.com
Einstein’s Photoelectric Equation: Energy Quantum of Radiation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Photoelectric Effect and Wave-Particle Duality - Exercises [पृष्ठ ३६६]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 20 Photoelectric Effect and Wave-Particle Duality
Exercises | Q 32 | पृष्ठ ३६६

संबंधित प्रश्न

Light of wavelength 488 nm is produced by an argon laser which is used in the photoelectric effect. When light from this spectral line is incident on the emitter, the stopping (cut-off) potential of photoelectrons is 0.38 V. Find the work function of the material from which the emitter is made.


Write Einstein’s photoelectric equation?


Briefly explain the three observed features which can be explained by Einstein’s photoelectric equation.


Define the terms (i) ‘cut-off voltage’ and (ii) ‘threshold frequency’ in relation to the phenomenon of photoelectric effect.

Using Einstein’s photoelectric equation shows how the cut-off voltage and threshold frequency for a given photosensitive material can be determined with the help of a suitable plot/graph.


Is p − E/c valid for electrons?


A small metal plate (work function φ) is kept at a distance d from a singly-ionised, fixed ion. A monochromatic light beam is incident on the metal plate and photoelectrons are emitted. Find the maximum wavelength of the light beam, so that some of the photoelectrons may go round the ion along a circle.


In a photoelectric experiment, the collector plate is at 2.0 V with respect to the emitter plate made of copper (φ = 4.5 eV). The emitter is illuminated by a source of monochromatic light of wavelength 200 nm. Find the minimum and maximum kinetic energy of the photoelectrons reaching the collector.


How does one explain the emission of electrons from a photosensitive surface with the help of Einstein’s photoelectric equation? 


Choose the correct answer from given options
Photons of frequency v are incident on the surface of two metals A and B of threshold frequency 3/4 v and 2/3 v, respectively. The ratio of maximum kinetic energy of electrons emitted from A to that from B is


Each photon has the same speed but different ______.


The wavelength of a photon needed to remove a proton from a nucleus which is bound to the nucleus with 1 MeV energy is nearly ______.


  1. In the explanation of photo electric effect, we assume one photon of frequency ν collides with an electron and transfers its energy. This leads to the equation for the maximum energy Emax of the emitted electron as Emax = hν – φ where φ0 is the work function of the metal. If an electron absorbs 2 photons (each of frequency ν) what will be the maximum energy for the emitted electron?
  2. Why is this fact (two photon absorption) not taken into consideration in our discussion of the stopping potential?

There are materials which absorb photons of shorter wavelength and emit photons of longer wavelength. Can there be stable substances which absorb photons of larger wavelength and emit light of shorter wavelength.


Radiation of frequency 1015 Hz is incident on three photosensitive surfaces A, B and C. Following observations are recorded:

Surface A: no photoemission occurs

Surface B: photoemission occurs but the photoelectrons have zero kinetic energy.

Surface C: photo emission occurs and photoelectrons have some kinetic energy.
Using Einstein’s photo-electric equation, explain the three observations.


The photon emitted during the de-excitation from the first excited level to the ground state of a hydrogen atom is used to irradiate a photocathode in which the stopping potential is 5 V. Calculate the work function of the cathode used.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×