English
Karnataka Board PUCPUC Science Class 11

A Monochromatic Light Source of Intensity 5 Mw Emits 8 × 1015 Photons per Second. this Light Ejects Photoelectrons from a Metal Surface. the Stopping Potential for this Setup is 2.0 V. - Physics

Advertisements
Advertisements

Question

A monochromatic light source of intensity 5 mW emits 8 × 1015 photons per second. This light ejects photoelectrons from a metal surface. The stopping potential for this setup is 2.0 V. Calculate the work function of the metal.

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)

One Word/Term Answer
Sum

Solution

Given:-

Intensity of light, I = 5 mW

Number of photons emitted per second, n = 8 × 1015

Stopping potential, V0 = 2 V

Energy, `E = hv = I/n = (5 xx 10^-3)/(8 xx 10^15)`

From Einstein's photoelectric equation, work function,

`W_0 = hv - eV_0`

Here, h = Planck's constant

`e = 1.6 xx 10^-19 C`

On substituting the respective values, we get :-

`W_0 = (5 xx 10^-3)/(8 xx 10^15) - 1.6 xx 10^-19 xx 2`

`= 6.25 xx 10^-19 - 3.2 xx 10^-19`

`= 3.05 xx 10^-19`

`= (3.05 xx 10^-19)/(1.6 xx 10^-15) = 1.906  "eV"`

shaalaa.com
Einstein’s Photoelectric Equation: Energy Quantum of Radiation
  Is there an error in this question or solution?
Chapter 20: Photoelectric Effect and Wave-Particle Duality - Exercises [Page 366]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 20 Photoelectric Effect and Wave-Particle Duality
Exercises | Q 23 | Page 366

RELATED QUESTIONS

In an experiment on the photoelectric effect, the slope of the cut-off voltage versus the frequency of incident light is found to be 4.12 × 10−15 Vs. Calculate the value of Planck’s constant.


Light of wavelength 488 nm is produced by an argon laser which is used in the photoelectric effect. When light from this spectral line is incident on the emitter, the stopping (cut-off) potential of photoelectrons is 0.38 V. Find the work function of the material from which the emitter is made.


Plot a graph showing the variation of photoelectric current with collector plate potential at a given frequency but for two different intensities I1 and I2, where I2 > I1.


point out any two characteristic properties of photons on which Einstein’s photoelectric equation is based ?


Briefly explain the three observed features which can be explained by Einstein’s photoelectric equation.


Define the terms (i) ‘cut-off voltage’ and (ii) ‘threshold frequency’ in relation to the phenomenon of photoelectric effect.

Using Einstein’s photoelectric equation shows how the cut-off voltage and threshold frequency for a given photosensitive material can be determined with the help of a suitable plot/graph.


Is p − E/c valid for electrons?


The electric field at a point associated with a light wave is `E = (100  "Vm"^-1) sin [(3.0 xx 10^15 "s"^-1)t] sin [(6.0 xx 10^15 "s"^-1)t]`.If this light falls on a metal surface with a work function of 2.0 eV, what will be the maximum kinetic energy of the photoelectrons?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


In a photoelectric experiment, the collector plate is at 2.0 V with respect to the emitter plate made of copper (φ = 4.5 eV). The emitter is illuminated by a source of monochromatic light of wavelength 200 nm. Find the minimum and maximum kinetic energy of the photoelectrons reaching the collector.


How does one explain the emission of electrons from a photosensitive surface with the help of Einstein’s photoelectric equation? 


Use Einstein's photoelectric equation to show how from this graph,
(i) Threshold frequency, and
(ii) Planck's constant can be determined.


Choose the correct answer from given options
Photons of frequency v are incident on the surface of two metals A and B of threshold frequency 3/4 v and 2/3 v, respectively. The ratio of maximum kinetic energy of electrons emitted from A to that from B is


Each photon has the same speed but different ______.


The minimum energy required to remove an electron is called ______.


The wavelength of a photon needed to remove a proton from a nucleus which is bound to the nucleus with 1 MeV energy is nearly ______.


  1. In the explanation of photo electric effect, we assume one photon of frequency ν collides with an electron and transfers its energy. This leads to the equation for the maximum energy Emax of the emitted electron as Emax = hν – φ where φ0 is the work function of the metal. If an electron absorbs 2 photons (each of frequency ν) what will be the maximum energy for the emitted electron?
  2. Why is this fact (two photon absorption) not taken into consideration in our discussion of the stopping potential?

A student performs an experiment on photoelectric effect, using two materials A and B. A plot of Vstop vs ν is given in Figure.

  1. Which material A or B has a higher work function?
  2. Given the electric charge of an electron = 1.6 × 10–19 C, find the value of h obtained from the experiment for both A and B.

Comment on whether it is consistent with Einstein’s theory:


Radiation of frequency 1015 Hz is incident on three photosensitive surfaces A, B and C. Following observations are recorded:

Surface A: no photoemission occurs

Surface B: photoemission occurs but the photoelectrons have zero kinetic energy.

Surface C: photo emission occurs and photoelectrons have some kinetic energy.
Using Einstein’s photo-electric equation, explain the three observations.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×